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In this lecture we see H̊astad’s switching lemma. Since in the class we saw exactly the

same presentation as in Beame’s survey on switching lemmas. I attach the appropriate

section from this survey as notes.
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is that, whereas in the conditional probability argument the conditioning on the value of
an arbitrary function being forced to 0 forces one to allow the number of unset variables
to vary, in the counting argument it is actually advantageous to fix the number of unset
variables.

In the following, we present the arguments for several switching lemmas for varied
probability distributions, some of which require new variations on the structure of the
counting argument. Razborov followed H̊astad’s original proof by showing that with high
probability a DNF formula with short terms has only short maxterms after restriction.

In fact, H̊astad’s argument, as is the case with many of the switching lemma arguments
mentioned above, more naturally proves a statement of the form that with high probability
a DNF formula with short terms has a small height decision tree after restriction. This is
a slightly stronger statement than the standard switching lemma phrasing since a small
height decision tree allows one to obtain a short DNF formula for the negation of the
formula which is essentially what is desired. This formulation of a switching lemma was
first used by Cai [Cai86]. Several authors have subsequently noted that H̊astad’s argument
also works in this fashion.

We modify Razborov’s argument to prove results about decision trees, in part because
it produces a more natural argument but also because in the case of the q-matching
restrictions described in section 5 it is not clear how one could adapt Razborov’s argument
to the analogue of maxterms.

2 Decision tree version of the H̊astad switching lemma

A restriction on a set of Boolean variables {xi | i ∈ I} is a map ρ : I → {0, 1, ∗}. The
result of its action on a Boolean function f is a Boolean function f↾ρ which is the result of
substituting ρ(i) for xi for all places where ρ(i) 6= ∗. We say that all variables xi such that
ρ(i) = ∗ are unset and the resulting function becomes a function of the unset variables in
the obvious way.

Define Rℓ
n to be the set of all restrictions ρ on a domain of n variables that have

exactly ℓ unset variables. H̊astad’s switching lemma states that for any function f that
is representable in disjunctive normal form (DNF) with short terms, then for almost all
restrictions ρ ∈ Rℓ

n, f↾ρ has a small height decision tree.

Fix some function f representable as a DNF formula F and assume that there is a
total order on the terms of F as well as on the indices of the variables. A restriction ρ
is applied to F in order, so that F ↾ρ is the DNF formula whose terms consist of those
terms of F that are not falsified by ρ, each shortened by removing any variables that are
satisfied by ρ, and taken in the order of occurrence of the original terms on which they
are based.

3



The canonical decision tree for F , T (F ) is defined inductively as follows:

1. If F is the constant function 0 or 1 (contains no terms or has an empty first term,
respectively) then T (F ) consists of a single leaf node labelled by the appropriate
constant value.

2. If the first term C1 of F is not empty then let F ′ be the remainder of F so that
F = C1 ∨ F ′. Let K be the set of variables appearing in C1. The tree T (F ) starts
with a complete binary tree for K, which queries the variables in K in the order
induced by the order on the indices. Each leaf vσ in the tree is associated with a
restriction σ which sets the variables of K according to the path from the root to
vσ. For each σ we replace the leaf node, vσ, by the subtree T (F↾σ). (Note that for
the unique σ which satisfies C1 the leaf vσ will remain a leaf and be labelled 1. For
all other choices of σ, the tree that replaces vσ is T (F↾σ) = T (F ′↾σ).)

We’ll show that for any DNF formula F , for an appropriately chosen restriction ρ,
the height of T (F↾ρ), |T (F↾ρ)|, is small with high probability. This lemma is a switching
lemma in the spirit of [H̊as87] because it will allow us to obtain a DNF formula with
short terms for ¬F↾ρ by taking the terms corresponding to the paths in T (F↾ρ) that have
leaf labels 0. (We do not optimize the constants here. For improved constants see the
discussion at the end of this section.)

Lemma 1: (H̊astad Switching Lemma) Let F be a DNF formula in n variables with terms
of length at most r. For s ≥ 0, ℓ = pn, and p ≤ 1/7,

|{ρ ∈ Rℓ
n : |T (F↾ρ)| ≥ s}|

|Rℓ
n|

< (7pr)s.

The proof of this switching lemma is a small modification of Razborov’s simplified
proof of H̊astad’s switching lemma and uses a counting argument rather than complicated
reasoning involving conditional probability. The property of the restriction family that is
critical to the argument was clearly necessary in H̊astad’s argument but is implicit here:
For any assignment of values to a set of variables and any s, it is exponentially more likely
in s that a randomly chosen restriction agrees with the assignment than that it leaves s
variables unset.

Before giving the proof of the switching lemma we give the following definition. Let
stars(r, s) to be the set of all sequences β = (β1, . . . , βk) such that for each j, βj ∈
{∗,−}r \ {−}r and such that the total number of *’s in all the βj is s. There is an easy
bound of |stars(r, s)| ≤ 2s−1rs but we can also prove:

Lemma 2: |stars(r, s)| < (r/ ln 2)s.
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Proof For convenience in the proof we shall include the empty string in stars(r, 0) which
would otherwise be empty. We shall show by induction on s that |stars(r, s)| ≤ γs for
(1 + 1/γ)r = 2; the statement of the lemma follows by using 1 + x < ex for x 6= 0.

The base case s = 0 follows trivially. Now suppose that s > 0. It is easy to see from
the definition that for any β ∈ stars(r, s), if β1 has i ≤ s *’s then β = (β1, β

′) where
β′ ∈ stars(r, s − i). (For i = s we have used our augmentation of stars(r, 0).) There are
(

r
i

)

choices of β1 so

|stars(r, s)| =

min(r,s)
∑

i=1

(

r

i

)

|stars(r, s − i)|

≤

r
∑

i=1

(

r

i

)

γs−i

= γs
r

∑

i=1

(

r

i

)

(1/γ)i

= γs[(1 + 1/γ)r − 1]

= γs

by the inductive hypothesis and the definition of γ.

Proof (H̊astad Switching Lemma) We only need to consider s > 0. Let S ∈ Rℓ
n be the

set of restrictions ρ such that |T (F↾ρ)| ≥ s. As in Razborov’s argument we obtain a bound
on |S|/|Rℓ

n| by defining a 1-1 map from S to a small set. The proof is somewhat different
because we are interested in the height of decision trees for F↾ρ rather than the length of
maxterms of F↾ρ.

We will define a 1-1 map

S → Rℓ−s
n × stars(r, s) × 2s.

Let F = C1 ∨C2 ∨ . . .. Suppose that ρ ∈ S and let π be the restriction associated with
the lexicographically first path in T (F ↾ρ) that has length ≥ s (any way of canonically
associated such a long path will do.) Trim the last few variables set in π along the path
from the root so that |π| = s. We use the formula F and π to determine the image of ρ.
The image of ρ is defined by following the path π in the canonical decision tree for F ↾ρ

and using the structure of that tree (see Figure 1.)

Let Cν1
be the first term of F that is not set to 0 by ρ. Then Cν1

↾ρ will be the first
term in F↾ρ. Since |π| > 0, such a term must exist and will not be the empty term. Let
K be the set of variables in Cν1

↾ρ and let σ1 be the unique restriction of the variables in
K that satisfies Cν1

↾ρ. Let π1 be the portion of π that sets the variables in K. We have
two cases based on whether or not π1 = π.
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Figure 1: Canonical decision tree T (F↾ρ)

1: If π1 6= π then by the construction of π, π1 sets all the variables in K. Note also
that Cν1

↾ρσ1
= 1 but since π1 6= π, π1 6= σ1, and thus Cν1

↾ρπ1
= 0.

2: If π1 = π then it is possible that π does not set all of the variables in K. In this
case we shorten σ1 to the variables in K that appear in π1. Now all we know is that
Cν1

↾ρσ1
6= 0.

Define β1 ∈ {∗,−}k based on the fixed ordering of the variables in term Cν1
by letting

the j-th component of β1 be ∗ if and only if the j-th variable in Cν1
is set by σ1. Note

that since Cν1
↾ρ is not the empty term there is at least one ∗ in β1. From Cν1

and β1 we
can reconstruct σ1.

Now, by the definition of T (F↾ρ), π \ π1 labels a path in the canonical tree T (F↾ρπ1
).

If π1 6= π, we repeat the above argument, with π \ π1 in place of π, ρπ1 in place of ρ and
find a term Cν2

which is the first term of F not set to 0 by ρπ1. Based on this we generate
π2, σ2, and β2 as before. We repeat this process until the round k in which π1π2...πk = π.

Let σ = σ1σ2...σk. We finally define δ ∈ {0, 1}s to be a vector that indicates for each
variable set by π (which are the same as those set by σ) whether it is set to the same value
as σ sets it.

The image of ρ under the 1-1 map we define is a triple, 〈ρσ1...σk, (β1, ..., βk), δ〉. Clearly
ρσ = ρσ1...σk ∈ Rℓ−s

n and (β1, ..., βk) ∈ stars(r, s) so the map is as required.

6



It remains to show that the map we have just defined is indeed 1-1. To do this,
as in Razborov’s argument, we show how to recover ρ from its image. The recon-
struction is iterative. In the general stage of the reconstruction we will have recovered
π1, ..., πi−1, σ1, ..., σi−1, and will have constructed ρπ1...πi−1σi...σk. Recall that for i < k,
Cνi

↾ρπ1...πi−1σi
= 1 and Cj ↾ρπ1...πi−1σi

= 0 for all j < νi. This clearly also holds when we
append σi+1...σk to the restriction. When i = k, something similar occurs except the only
guarantee is that Cνi

↾ρπ1...πk−1σk
6= 0. Thus we can recover νi as the index of the first term

of F that is not set to 0 by ρπ1...πi−1σi...σk.

Now, based on Cνi
and βi we can determine σi. Since we know σ1, ..., σi, using the

vector δ we can determine πi. We can now change ρπ1...πi−1σi...σk to ρπ1...πi−1πiσi+1...σk

using the knowledge of πi and σi. Finally, given all the values of the πi we can reconstruct
ρ.

Now we compute the value |S|/|Rℓ
n|:

|Rℓ
n| =

(

n
ℓ

)

2n−ℓ so

|Rℓ−s
n |

|Rℓ
n|

=
ℓ(s)

(n − ℓ + s)(s)
· 2s ≤

(2ℓ)s

(n − ℓ)s
.

Applying the bounds we obtain

|S|

|Rℓ
n|

≤
|Rℓ−s

n |

|Rℓ
n|

· |stars(r, s)| · 2s

≤

(

4ℓr

(n − ℓ) ln 2

)s

= (
4pr

(1 − p) ln 2
)s

for ℓ = pn. For p < 1/7 this is at most (7pr)s.

It is worth noting that in avoiding conditional probability we do not obtain bounds
that are quite as strong as those obtained by H̊astad. It is possible to obtain somewhat
better bounds than described above by combining the information in stars(r, s) and δ
since, except for i = k, σi 6= πi and thus δ must contain at least one 1 in the seqment
associated with each σi. In fact, by choosing without loss of generality a long branch π
that does not have a leaf labelled 1, this is true even in the case that i = k. In that
case we can replace Lemma 2 by a similar argument that produces a bound of αs on
the number of different encodings of both stars(r, s) and δ where α is the solution of
(1 + 2/α)r − (1 + 1/α)r = 1. This produces a final result very close to H̊astad’s bounds
but it has a 1−p in the denominator as opposed to a 1+p. The gap here seems to depend
on the fact that we have fixed the number of stars as opposed to allowing it to vary. We
chose to separate stars(r, s) from δ in our argument above since stars(r, s) is useful in the
other switching lemma proofs.
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