
Boolean function complexity

Lecturer: Nitin Saurabh
Scribe: Nitin Saurabh

Meeting: 5
22.05.2019

1 Decision tree complexity

One of the simplest model of computation is the decision tree. The goal here is to compute
a Boolean function f : {0, 1}n → {0, 1} using queries to the input.

Definition 1 (Decision Trees). A decision tree for f : {0, 1}n → {0, 1} is a binary tree whose
internal nodes are labelled by the variables x1, . . ., xn and two edges incident on a node are
labelled by 0 and 1. The leaves of the tree are also labelled with 0 or 1.

The computation on an unknown input x = x1x2 · · ·xn proceeds at each node by querying
the input bit xi indicated by the node’s label. If xi = 1 (resp. 0) the computation continue
in the subtree reached by taking the edge labelled 1 (resp. 0). Thus on an input we follow
a path in the tree starting from the root. The label of the leaf so reached is the value of the
function on that particular input.

The depth of a decision tree is the length of a longest path from the root to a leaf.

For an example see Fig. 1. It computes majority on 3 variables. We say that a decision
tree computes f if it agrees with f(x) for all x ∈ {0, 1}n. Clearly there are many different
decision trees that compute the same function. The complexity of a decision tree is its depth,
i.e., the number of queries made on the worst case input.

Definition 2 (Decision tree complexity). The decision tree complexity Ddt(f) of a function
f is the minimum depth of a decision tree computing f .

Since knowing all the n-bits of an input uniquely identifies the input, we have for all
Boolean functions f : {0, 1}n → {0, 1}, Ddt(f) ≤ n. We will be interested in proving tight
complexity bounds in this model. Generally the lower bound arguments proceed via what is
known as an adversary argument. We start with a simple example.

Proposition 3. Ddt(ORn) ≥ n.

Proof. Let T be a decision tree claiming to solve ORn. Think of an execution of T where an
adversary answers the queries made by T . Since T claims to compute ORn, the adversary
chooses to respond with 0 for the first n − 1 queries. Thus, the value of the n-th query
determines whether the OR of the input bits is 0 or 1. Therefore, any decision tree computing
ORn must make n queries in the worst case.

5-1

x1

x2 x2

x3 0 1x3

0 1 0 1

0 1

1 00 1

0 1 0 1

Figure 1: Decision tree computing majority on 3 variables

The high-level idea of an adversary argument is that an all-powerful malicious adversary
pretends to choose a “hard” input. When the decision tree wants to query an input bit,
the adversary sets that bit to whatever value will make the decision tree do the most work.
If the decision tree doesn’t query enough input bits before terminating, then there will be
several different inputs, each consistent with the input bits already seen, that should result in
different outputs. Whatever the decision tree outputs, the adversary can “reveal” an input
that has all the queried input bits but contradicts the decision tree’s output.

Given x ∈ {0, 1}(
n
2), we can associate a graph Gx on n vertices where an edge e is present

iff xe = 1. Consider the following indicator function for connectivity Connn : {0, 1}(
n
2) →

{0, 1},
Connn(x) = 1 if and only if Gx is connected.

We start with an easy lower bound on its decision tree complexity.

Proposition 4. Ddt(Connn) ≥ n2/4.

Proof. We want to give a strategy that forces a decision tree to query many edges before
reaching an answer. We know that a graph is connected iff for every cut in the graph there
exists at least one edge crossing the cut. Our strategy would be to force the decision tree
to query every edge in a particular cut. To maximize the number of queries, consider a
partition of V = V1∪̇V2 such that |V1| = |V2|. Thus, the size of the cut is n2/4.

The strategy is to reply with xe = 0 for every edge in the cut until the very last edge
and for every edge not in the cut reply with xe = 1. Clearly the decision tree has to query
the last edge in the cut to know whether the graph is connected or not.

We now build on this idea to show that in fact it is not possible to improve on the trivial
upper bound. This time our strategy would be to build a graph that is minimally connected,
i.e., a spanning tree.

Theorem 5. Ddt(Connn) ≥
(
n
2

)
.

5-2

Proof. Consider the strategy given as follows. We maintain connected components of the
partial graph given by the queried edges. We start with n components, i.e., each node in
different components. It captures the fact that no queries have been made yet. For each
query we do the following.

Check if the queried edge belongs to the same connected component. If yes, then return
0. Otherwise, it connects two distinct components, say C1 and C2. Now check if it is the
last edge to be queried in one of the two following cuts: (i) C1 and V \ C1, and (ii) C2 and
V \ C2. If yes, then return 1, else return 0.

We claim that the partial graph maintained by the above strategy is a forest and further-
more, this forest does not turn into a single connected tree until the last edge is queried. It
is easily seen that the theorem follows from the claim, since a query algorithm has to query
all the edges before reaching a decision.

It is clear that the partial graph maintained is a forest since we never add an edge that is
contained within a component; hence the graph maintained is acyclic. Moreover, whenever
we add an edge we reduce the number of components by 1. Thus, the graph becomes
connected when (n− 1)-th edge is added to the partial graph.

We now prove that every other edge has been queried before the (n−1)-th edge is added.
Suppose not. Then there exists an edge e that has not been queried and is not present in
the spanning tree constructed after the (n− 1)-th edge is added. Adding the edge e to the
spanning tree creates a unique cycle containing that edge. Let e′ be another edge on this
cycle that was the last edge, among the edges on the cycle, to be added to the tree. It is
now easily seen that when e′ was being added to the tree, e was also an edge present in the
cut that led to the inclusion of e′. Thus, it contradicts the choice of e′ being the last edge
to be queried in that cut.

Definition 6. A Boolean function f : {0, 1}n → {0, 1} is called evasive if Ddt(f) = n.

Rephrasing the previous theorem, we see that Connn is an evasive function.

2 Certificate complexity

Let a ∈ {0, 1}n. How many input bits of a one must query in order to ascertain the function
value f(a)? In the previous section we saw that Ddt(f) bits suffices to know the value at
any input. However, in a decision tree, queries are constrained in some sense, for example,
the variable at the root is queried on every input. The question therefore now is: Can we
do better if we relax this and allow for each input to choose its own smallest set of bits to be
queried? This leads to the notion of certificate complexity.

Definition 7. A certificate for a Boolean function f is a subset S ⊆ [n] of variables with an
assignment α : S → {0, 1} such that for all x, y ∈ {0, 1}n with x|S = y|S = α, f(x) = f(y).
The size of a certificate is |S|. A certificate is called a 1-certificate if the function value is
1 on all inputs consistent with the certificate. Similarly, when the function value is 0, its
called a 0-certificate.

5-3

The certificate complexity of f at x, denoted Cert(f, x), is the size of the smallest certifi-
cate consistent with x.

The certificate complexity of f , denoted Cert(f), is defined to be maxx Cert(f, x).
The 1-certificate complexity of f , denoted Cert1(f), is defined to be maxx : f(x)=1 Cert(f, x).
The 0-certificate complexity of f , denoted Cert0(f), is defined to be maxx : f(x)=0 Cert(f, x).

For example, Cert(ANDn) = n, Cert0(ANDn) = 1, and Cert1(ANDn) = n. The following
proposition is an easy observation now.

Proposition 8. Let f : {0, 1}n → {0, 1}. Then, for all x ∈ {0, 1}n, Cert(f, x) ≤ Ddt(f).
Therefore, Cert(f) ≤ Ddt(f).

Remark 2.1. 1-certificate complexity can be viewed as a non-deterministic analog of (de-
terministic) decision trees. Similarly, 0-certificate complexity can be viewed as a co-non-
deterministic analog of deterministic decision trees.

A natural question now is how the decision tree and certificate complexities are related.
We saw that Cert(f) ≤ Ddt(f), but can decision tree depth be exponentially larger than the
certificate complexity? Consider the following example,

Tribes√n,√n :=

√
n∨

i=1

√n∧
j=1

xij

 . (1)

It is a read-once DNF (every variable appears exactly once) defined on n variables. It belongs
to a class of functions known as Tribes functions. It is easily seen that Cert1(Tribes√n,√n) =

Cert0(Tribes√n,√n) =
√
n, but Ddt(Tribes√n,√n) = n. So this example shows a quadratic gap

between certificate complexity and decision tree depth.

Theorem 9. Let f : {0, 1}n → {0, 1}. Then, Ddt(f) ≤ Cert0(f) · Cert1(f).

Proof. We provide a decision tree algorithm that will decide f in Cert0(f) ·Cert1(f) queries.
The algorithm exploits the following crucial property of 0-certificates and 1-certificates.

Claim 2.1. Let (S, α) be a 1-certificate and (T, β) be a 0-certificate for f . Then S ∩ T 6= ∅.
Furthermore, ∃ i ∈ S ∩ T such that α(i) 6= β(i).

Proof. Suppose they are not contradicting on one of the intersecting variables. Then we can
make an input that is consistent with both (S, α) and (T, β), thereby contradicting the fact
these are certificates for f .

We now describe the decision tree algorithm to compute f(x). It maintains a set X ⊆
{0, 1}n consisting of all inputs that are consistent with the replies to queries made so far.
Initially X = {0, 1}n.

5-4

1. Repeat the following Cert1(f) times:
If the function is constant on X , then return this value and stop. Otherwise, pick
a 0-certificate consistent with queries made so far and query all the variables in this
certificate. If the queried values agree with the assignment given by the certificate then
return 0 and stop. If not, then prune X to be the remaining set of inputs consistent
with the answers to the queried variables.

2. Pick a y ∈ X and return f(y).

It is clear that the algorithm queries at most Cert1(f) ·Cert0(f) variables, since the algorithm
runs for Cert1(f) times and each time it queries Cert0(f) variables.

We now need to show its correctness. Again it is clear that if it outputs in Stage 1,
then the output is correct. So we consider the case when it returns the answer in Stage 2.
Using Claim 2.1, we see that after querying a 0-certificate in Stage 1 we reduce the number
of unknown variables in every 1-certificate by 1. Therefore, after Cert1(f) steps, we would
have queried all possible variables appearing in all 1-certificates. Thus, at the end of the
Stage 1, after Cert1(f) steps, we know whether our input contains a 1-certificate or not. In
other words, all the remaining inputs in X have the same function value.

Since Cert1(f) and Cert0(f) can be viewed as non-deterministic decision tree complexities.
Theorem 9 can also be viewed as showing “P = NP ∩ co-NP” for decision tree depth.

3 Sensitivity vs. Block sensitivity

Definition 10. The sensitivity of a Boolean function f at an input x ∈ {0, 1}n, denoted
s(f, x), is the number of neighbors y of x in the hypercube graph such that f(y) 6= f(x). That
is,

s(f, x) = |{i ∈ [n] | f(x) 6= f(xi)}|,

where xi denotes the input obtained from x by flipping the i-th bit while keeping every other
bit fixed.

The sensitivity of f , denoted s(f), is defined to be maxx s(f, x).

For example, s(ORn, 0
n) = n, s(ORn, x) = 1 ∀x ∈ {0, 1}n \ 0n, and s(ORn) = n. Also,

s(Parityn) = n.
Nisan generalized the definition of sensitivity to block sensitivity in order to characterize

the complexity of computing functions on a CREW PRAM.
For an input x ∈ {0, 1}n and S ⊆ [n], let xS denote the input obtained from x by flipping

the bits indexed by S while leaving the other bits unchanged. We say that a set (block) S
is a sensitive block for f at x if f(x) 6= f(xS).

Definition 11. The block sensitivity of f at x, denoted bs(f, x), is the largest number t such
that there exists t disjoint sets S1, . . . , St ⊆ [n] such that f(xSi) 6= f(x), for all 1 ≤ i ≤ t.

The block sensitivity of f , denoted bs(f), is defined to be maxx bs(f, x).

5-5

In the definition of block sensitivity when the disjoint sets are all taken to be singleton
sets, i.e., |Si| = 1, we obtain sensitivity. Therefore, s(f, x) ≤ bs(f, x). In fact, we have the
following chain of inequalities.

Proposition 12. Let f be any Boolean function. Then,

s(f, x) ≤ bs(f, x) ≤ Cert(f, x) ≤ Ddt(f).

Proof. We just saw the first inequality and third inequality is the Proposition 8. The second
inequality follows from the observation that a certificate must query at least one variable
from each sensitive block.

The largest known gap between sensitivity and block sensitivity is quadratic.

Example 13 (Rubinstein 1995). We divide the set of n variables into
√
n disjoint (consec-

utive) subsets of
√
n variables each. That is, for 1 ≤ j ≤

√
n, Sj = {x1+(j−1)

√
n, . . . , xj√n}.

For x ∈ {0, 1}n, define R(x) = 1 if and only if there exists at least one subset Sj where
two consecutive variables are set to 1 and other

√
n− 2 variables are set to 0.

Clearly we have
bs(R) ≥ bs(R, 0n) ≥ n/2,

where the sensitive blocks at 0n are given by n/2 mutually disjoint sets of two consecutive
variables.

On the other hand, we have s(R, x) ≤
√
n for all x ∈ R−1(1) and s(R, x) ≤ 2 for all

x ∈ R−1(0).
Therefore, bs(R) ≥ s(R)2/2, i.e., we have a quadratic gap between block sensitivity and

sensitivity.

It is not known whether block sensitivity can be upper bounded by a polynomial in
sensitivity. This is well known as sensitivity conjecture.

Conjecture 14 (Sensitivity conjecture). Does there exists a universal constant c > 0 such
that for all Boolean functions f ,

bs(f) = O(s(f)c)?

5-6

	Decision tree complexity
	Certificate complexity
	Sensitivity vs. Block sensitivity

