
Boolean function complexity

Lecturer: Nitin Saurabh
Scribe: Nitin Saurabh

Meeting: 2
24.04.2019

In this lecture we will see asymptotically tight upper bound of O(2n/n) on the circuit
complexity of functions over n variables and lower bounds against circuits using the gate
elimination technique.

1 Upper Bounds

In the previous lecture we saw that C(n) > 2n/n. Recall C(n) is the smallest number t such
that every function on n variables can be computed by a circuit of size at most t. We now
show that every function can be computed by a circuit of size at most O(2n/n).

Let f : {0, 1}n → {0, 1}. Consider the following brute-force representation of f ,

f(x) =
∨

a : f(a)=1

[x = a],

where [x = a] is a Boolean function that outputs 1 iff x = a. We could implement [x = a]
by a simple conjunction as follows,

[x = a] = xa1
1 ∧ xa2

2 ∧ · · · ∧ xai
i ∧ · · · ∧ xan

n ,

where xai
i = xi if ai = 1, and xai

i = ¬xi otherwise. Thus we obtain a DNF representation of
f ,

f(x) =
∨

a : f(a)=1

(xa1
1 ∧ xa2

2 ∧ · · · ∧ xai
i ∧ · · · ∧ xan

n).

Clearly, the size of this circuit is at most O(n2n). Can we do better?

Function Decomposition: Consider the following recurrence:

f(x) = (xn ∧ f(x1, . . . , xn−1, 1)) ∨ (¬xn ∧ f(x1, . . . , xn−1, 0)) . (1)

Suppose we have circuits for f(x1, . . . , xn−1, 1) and f(x1, . . . , xn−1, 0), then we can con-
struct a circuit for f as in Figure 1. Clearly, from this construction we have C(f) ≤
C(f |xn=1)+C(f |xn=0)+3, where f |xi=b = f(x1, . . . xi−1, b, xi+1, xn) for b ∈ {0, 1}. Recursively,
we can apply this decomposition to f |xn=1 and f |xn=0. Therefore, the size of the circuit can
be bounded by the following recurrence,

T (n) ≤ 2 · T (n− 1) + 3.

Solving the recurrence we obtain that T (n) ≤ 4 · 2n−1. How much more can we improve?
Lupanov established the following tight upper bound.

2-1

∨

∧ ∧

xn f(x1, . . . , xn−1, 1) f(x1, . . . , xn−1, 0)

¬

Figure 1: Function decomposition

Theorem 1 (Lupanov 1958). For every Boolean function f : {0, 1}n → {0, 1},

C(f) ≤ (1 + o(1))
2n

n
.

Proof. We will prove a slightly weaker but almost tight bound of (4 + o(1))2
n

n
.

Let Allk : {0, 1}k → {0, 1}2
2k

be the function that computes all Boolean functions over k
variables at the same time. That is, Allk(y) = (f1(y), f2(y), . . . , f

22k
(y)).

We now look back at the function decomposition (1). Consider the recursive process at
the (n − k)-th step; we have a circuit of size at most 3(2n−k − 1) with inputs as the last
n− k variables, xk+1, xk+2, . . . , xn, and subfunctions on the first k variables fa(x1, . . . , xk) =
f(x1, . . . , xk, a1, . . . , an−k) where a ∈ {0, 1}n−k. Note that if we restrict the k-th variable
according to the recurrence (1), then we increase the size of the circuit in the next step
by 3 · 2n−k. One the other hand, instead of recursing on xk, we could also plug in the
circuit for Allk. This is because the subfunctions on the first k variables are included in the
outputs of Allk. In this case we will increase the size by C(Allk). If it were the case that
3 · 2n−k > C(Allk), then we could achieve reduction in the size by computing all functions on
k variables. Therefore, the total size of the circuit will be at most 3 · 2n−k + C(Allk).

To complete the proof we now show that reduction in size is possible when k is roughly
log n. The following lemma gives an efficient circuit construction to compute all Boolean
functions on k variables.

Lemma 2. For any k, C(Allk) ≤ 22k(1 + o(1)).

We first finish the proof of the theorem assuming the lemma. Choose k = log(n− log n).
We can now bound the size of the circuit as follows

2-2

∨

∧ ∧

xk f1(x1, . . . , xk−1) f2(x1, . . . , xk−1)

¬

f

Figure 2: Inductive construction for Allk

C(f) ≤ 3 · 2n−k + 22k(1 + o(1))

≤ 3 · 2n

n− log n
+

2n

n
(1 + o(1))

≤ 2n

n
(4 + o(1)).

We now prove Lemma 2 to complete the construction.
Proof of Lemma 2. A function f on k variables can be recursively defined as follows

f(x) = (xk ∧ f1(x1, . . . , xk−1)) ∨ (¬xk ∧ f2(x1, . . . , xk−1)) ,

where f1 and f2 are functions on k − 1 variables. Therefore, using the above decomposition
we can inductively construct a circuit for Allk if we have a construction for Allk−1 as shown
in Figure 2. Therefore, total size required to realize all 22k functions

C(Allk) ≤ C(Allk−1) + {# gates required to compute all k-variate functions from Allk−1},
≤ C(Allk−1) + # of ∧ gates + # of ∨ gates ,

≤ C(Allk−1) + 2 · 22k−1

+ 22k−1 · 22k−1

,

≤ C(Allk−1) + 2 · 22k−1

+ 22k .

Solving the above recurrence with C(All0) = 2, we obtain the required upper bound on the
size of the circuit computing all functions,

C(Allk) ≤ 22k

(
1 +

3
∑k−1

i=0 22i

22k

)
= 22k(1 + o(1)).

2-3

Analogous to time/space hierarchy theorem in Turing machine model, we can show that
larger circuits can compute strictly more functions than the smaller ones.

For t : N → N, let size(t) denote the set of Boolean functions f : {0, 1}∗ → {0, 1} such
that C(fn) ≤ t(n) for all n ∈ N.

Theorem 3. Let t(n) be such that n ≤ t(n) ≤ 2n−2/n. Then,

size(t(n)) (size(4t(n)).

Proof. Pick m ≤ n such that t(n) ≤ 2m/m ≤ 2 · t(n). Consider the set S of all Boolean
functions over n variables that depend only on m variables. By Shannon’s lower bound
(Theorem 7 in Lecture 1), there exists f : {0, 1}n → {0, 1} in S such that C(f) > 2m/m ≥
t(n). On the other hand, by Lupanov’s upper bound (Theorem 1), we have C(f) ≤ 2·2m/m ≤
4t(n).

The lower bound results we have seen until now are not quite satisfactory. We know
that almost all Boolean functions are hard (Shannon’s lower bound), however no “explicit”
function is known to be hard. Proving super-polynomial lower bound against “explicit”
functions, e.g., functions in NP, is the main goal of the circuit complexity. Unfortunately at
the moment we can not even prove a lower bound better than 5n. In the following section
we will see some lower bounds against “explicit” functions, e.g., Thnk , Parity, etc.

2 Gate Elimination

Existing lower bounds for circuits are proved by what is known as the gate elimination
technique. The overall idea behind this technique is as follows.

Given a circuit that computes a particular function, we first argue that some variable
must be an input to many gates. Then, argue that setting this variable to a constant will
eliminate many gates. Repeat this process to conclude that the initial circuit must have had
large size.

We now prove a linear lower bound for the threshold function Thn2 : {0, 1}n → {0, 1}.
Recall, Thn2 (x) = 1 iff

∑n
i=1 xi ≥ 2. We also recall that B2 is the set of all 16 Boolean

functions over 2 variables.

Theorem 4. For every n, Thn2 requires at least 2n− 4 gates over circuits with gates in B2.

Proof. The proof is by induction on n.
Base case: n = 3. The bound is trivial since Th32 depends on all 3 variables. (Also see

Exercise 2 in Problem Set 1.)
For the induction step, assume that the theorem holds for Thn−12 . We would now prove

it for n. Consider an optimal circuit C for Thn2 . Let g be a gate in C such that the two gates
feeding into g are input gates. Wlog, we assume that the input gates are labelled by distinct
variables xi and xj. We now claim the following.

2-4

Claim 2.1. Either xi or xj is an input to another gate h (distinct from g).

We complete the proof assuming the claim. Suppose xi is the variable that feeds into
h. Set xi = 0 in the circuit C. The resulting circuit computes Thn−12 . Furthermore, setting
xi = 0 has eliminated both the gates g and h from the new circuit. This is because, upon
setting xi, both g and h are functions of at most one child. So we can rewire these children
to be an input to the gates where g or h were feeding. Thus eliminating the need of g
and h in the process. Since the resulting circuit computes Thn−12 , by induction hypothesis
it has at least 2(n − 1) − 4 gates. Therefore, the original circuit must have had at least
2(n− 1)− 4 + 2 = 2n− 4 gates. This concludes the proof of the theorem. We now prove the
claim.

Proof of Claim 2.1: We prove the claim by contradiction. Suppose both xi and xj are
inputs to the gate g alone. We now consider the four possible settings to xi and xj. Under
these settings the circuit simplifies to two distinct circuits, namely one where g evaluates to
0 and the second where g evaluates to 1. On the other hand, the function Thn2 simplifies to
three distinct subfunctions, namely Thn−10 , Thn−11 and Thn−12 . Thus we have a contradiction.

Until very recently, the best known lower bound over the basis B2 was 3n− o(n) [Blu83].
In a recent work this was improved to (3 + 1

86
)n− o(n) [FGHK16].

Restricting the basis to De Morgan basis, i.e., ∨, ∧, and ¬, allows us to prove slightly
better lower bounds.

Theorem 5 ([Sch76]). The minimal number of ∧ and ∨ gates in a circuit over De Morgan
basis computing Parityn or ¬Parityn is exactly 3(n− 1).

Proof. Upper bound: We can compute the parity on two variables x1 and x2 as fol-
lows: x1 ⊕ x2 := Parity2(x1, x2) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). Thus using the recursion,
Parityn(x) = Parityn−1(x1, . . . , xn−1) ⊕ xn, we obtain a circuit of size 3(n − 1) computing
Parityn.

Lower bound: The proof is by induction on n. Base case is n = 2. It easily seen that
we need at least 3 gates in this case. Suppose not. That is, there exists a circuit with 2
gates that computes Parity2. Clearly one of the two variables x1 or x2 is an input to the
output gate. Since the output gate is either ∨ or ∧ we can make it a constant by setting the
variable that feeds into it appropriately. For example, if the output gate is an ∨ gate and x2

(or, ¬x2) feeds into it, then by setting x2 to 1 (or, 0) we can make the output gate constant.
Analogously when the output gate is an ∧ gate. Since parity doesn’t reduce to a constant
unless all variables are set, we obtain a contradiction to the fact that the circuit computes
parity.

For the induction step, we assume that the theorem holds for n− 1. We now prove it for
n. Let us examine a minimal size circuit C that computes Parityn. Let g be a gate in C such
that the two gates feeding into g are input gates. Wlog, we assume that the input gates are
labelled by distinct variables xi and xj.

2-5

Claim 2.2. xi is also an input to another gate h (distinct from g).

Proof. Suppose not. That is, xi only feeds into the gate g. Then, there is a setting to the
other variable xj such that g evaluates to a constant. Thus making the circuit independent
of xi. However, the resulting circuit computes either Parityn−1 or ¬Parityn−1. Therefore, we
obtain a contradiction.

Claim 2.3. h is not the output gate of the circuit C.

Proof. This is because if it were so, then we can make the output gate constant by just
setting the variable xi which is a contradiction to the fact that it computes Parityn.

Therefore, we know that h feeds into some other gate h′ in the circuit. We now claim
that h′ must be distinct from g.

Claim 2.4. h′ is distinct from g.

Proof. This follows from the choice of g. Recall that g is such that the two gates feeding
into it are input gates. Whereas a non-input gate h feeds into h′.

Thus, we have three distinct gates g, h, and h′ in the circuit C. We now observe that
there is a setting to xi ∈ {0, 1} such that the aforementioned three gates are eliminated in
the resulting circuit.

Claim 2.5. There exist b ∈ {0, 1} such that when C is restricted to xi = b the three gates g,
h and h′ are eliminated from the resulting circuit.

Proof. Since h ∈ {∨,∧}, there is a setting to xi such that h evaluates to a constant. On
this setting, we claim that the three gates are eliminated. Clearly h has been eliminated.
Moreover, the other two gates g and h′ are now functions over one variable and hence we
can rewire the edges to eliminate the need for g and h′ (as was done in Theorem 4).

We restrict the circuit C as per Claim 2.5 while eliminating at least 3 gates. The resulting
circuit computes Parityn−1 or ¬Parityn−1. Therefore, by induction hypothesis, it still has
3(n− 2) gates. Hence, the original circuit C must have had at least 3(n− 2) + 3 = 3(n− 1)
gates to begin with. This concludes the proof of the lower bound.

The current best lower bound known over the De Morgan basis is 5n− o(n) [IM02].

References

[Blu83] Norbert Blum. A boolean function requiring 3n network size. Theoretical Com-
puter Science, 28(3):337 – 345, 1983.

2-6

[FGHK16] Magnus G. Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S.
Kulikov. A better-than-3n lower bound for the circuit complexity of an explicit
function. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 89–98, 2016.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n - o(n) for
boolean circuits. In Proceedings of the 27th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS ’02, pages 353–364, 2002.

[Sch76] C. P. Schnorr. The combinational complexity of equivalence. Theoretical Com-
puter Science, 1(4):289 – 295, 1976.

2-7

	Upper Bounds
	Gate Elimination

