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In the last lecture we saw that when a t-DNF f is hit with a p-random restriction ρ then
the depth of the canonical decision tree for f |ρ is larger than k with probability at most
(7pt)k.

We now state different versions of switching lemma with a better constant. They all
follow from the above statement (modulo the improved constant).

Theorem 1 (Switching lemma version 1). Let f be t-DNF (or, t-CNF) and ρ be a p-random
restriction where p ∈ [0, 1]. Then, for all k > 0,

Pr
ρ

[Ddt(f |ρ) ≥ k] ≤ (5pt)k.

Let us denote the dnf-width(f) (resp., cnf-width(f)) to be the minimal width of a DNF
(resp., CNF) representing f . Recall the width of DNF (or, CNF) is the maximal term (or,
clause) size in it.

Theorem 2 (Switching lemma version 2). Let f be t-DNF and ρ be a p-random restriction
where p ∈ [0, 1]. Then, for all k > 0,

Pr
ρ

[cnf-width(f |ρ) ≥ k] ≤ (5pt)k.

Similarly one can have an analogous version where we hit a t-CNF with a random restric-
tion and bound the dnf-width of the restriction. We note another version where the degree
of the restricted function is bounded.

Theorem 3 (Switching lemma version 3). Let f be t-DNF (or, t-CNF) and ρ be a p-random
restriction where p ∈ [0, 1]. Then, for all k > 0,

Pr
ρ

[deg(f |ρ) ≥ k] ≤ (5pt)k.

We now use switching lemma to prove an optimal lower bound for Parityn against constant
depth circuits.

1 Lower bound for Parity

Recall in Lecture 8 we constructed a circuit of size O(n2n
1/(d−1)

) and depth d that computes

Parityn. We now prove a matching lower bound of 2Ω(n1/(d−1)).
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Theorem 4. If a circuit of size s and depth d computes Parityn. Then,

s ≥ 2
Ω

(
n

1
d−1

)
.

Proof. Let C be a circuit of size s and depth d computing parity. We assume, wlog, that the
circuit is alternating. That is, each layer has the same type of gates (either OR or AND) and
two consecutive layers have different types of gates. The overall idea is to use the switching
lemma to perform depth-reduction on C while making sure that not many variables are set
by the restriction. In the process the circuit is reduced to depth 2 and still computes Parity
or ¬Parity on the remaining variables. We then obtain a lower bound on the initial size by
comparing the bottom fan-in of the reduced depth-2 circuit and the number of remaining
variables. We now formalize this idea.

Step 0: We do some preprocessing to be able to effectively apply the switching lemma.
In particular, we reduce the bottom fan-in of C. That is, fan-in of the gates at layer 1. We
want to make sure that the bottom fan-in of C is at most 4 log s. To do so we hit C with
p-random restriction where p is a constant. (Think of p ≤ 1/50.) Thus, the probability that
a gate of fan-in more than 4 log s is not set to a constant is at most(

1 + p

2

)4 log s

<
1

s2
.

Therefore the probability that some gate of fan-in more than 4 log s survives is at most 1/s
by the union bound.

Simultaneously the expected number of remaining variables is pn under the random
restriction. Therefore, by Markov’s inequality, with probability at least 1/2, the number of
remaining variables is at least pn/2.

Therefore, there exists a p-random restriction ρ such that the bottom fan-in of C|ρ is at
most 4 log s and the number of unset variables is at least pn/2. Let us denote the restricted
circuit C|ρ by C0.

Step 1: We now hit C0 with a p′-random restriction where p′ = p/ log s to reduce the
depth by 1. Suppose, wlog, that layer 1 gates in C0 are AND gates, so the layer 2 gates
are OR gates and layer 3 gates are again AND gates. Now consider the gates at layer 2.
Each gate is a DNF with width at most 4 log s. Thus, when we hit this gate with p′-random
restriction and use Theorem 2 with t = k = 4 log s, then we obtain a (4 log s)-CNF for the
restricted function with probability at least 1 − (5p′t)k. From the choice of p′, t and k, we
obtain

(5p′t)k ≤ (20p)k < 2−k ≤ 1

s4
.

Thus the probability that some gate at layer 2 fails to switch to a CNF with small width is
at most 1/s3. Also, again by Markov’s inequality, with prob. at least 1/2, the number of
remaining variables is at least (p′ · pn)/4 = (p2 · n)/(22 · log s).

Therefore, there exists a p′-random restriction ρ1 such that it switches every gate at
layer 2 by a CNF of width at most 4 log s, thus reducing the depth by 1 (since layer 2 and 3
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have same type of gates), and the number of unset variables is at least p2·n
22·log s

. Let us denote

the restricted circuit C0|ρ′ of depth d− 1 by C1.
We now recursively apply Step 1 to obtain a depth-2 circuit in d− 2 steps as follows.

restriction circuit bottom fan-in depth # remaining variables

C n d n

p-restriction C0 4 log s d pn
2

p′-restriction C1 4 log s d− 1 p2·n
22·log s

p′-restriction C2 4 log s d− 2 p3·n
23·(log s)2

...
...

...
...

...
...

...
...

...
...

p′-restriction Cd−2 4 log s 2 pd−1·n
2d−1·(log s)d−2

Thus, in the process we have obtained a depth-2 circuit with width at most 4 log s com-

puting Parity or ¬Parity on at least pd−1·n
2d−1·(log s)d−2 variables. Hence, we must have

4 log s ≥ pd−1 · n
2d−1 · (log s)d−2

,

and thereby,

(log s)d−1 ≥ pd−1

2d−1 · 4
· n.

This implies the required lower bound on s.

2 Upper bound on a minimal certificate size

Recall the certificate complexity Cert(f) of a function f is maxx Cert(f, x). We now de-
fine a new measure called the minimal certificate complexity Certmin(f) of f as follows,
Certmin(f) := minx Cert(f, x). By definition Certmin(f) is the minimum number of bits that
must be set to make f a constant. We now show that constant depth circuits have low
minimal certificate.

Theorem 5. Let f be computable by a circuit of size s and depth d. Then,

Certmin(f) ≤ n− n

cd · (log s)d−2
+ 4 log s,

where cd is a constant that depends on the depth d.

10-3



Proof. Consider the depth reduction process in the proof of Theorem 4. At the end, we
obtained a circuit Cd−2 of depth-2 with bottom fan-in 4 log s. To obtain this circuit we set
at most n− n

cd·(log s)d−2 variables. Now observe that any depth-2 circuit can be made constant

by setting all the variables in any one term (or, clause). Therefore, we need to set at most
4 log s more variables to make Cd−2 a constant, and thereby obtaining the theorem.

Note we could also obtain the lower bound for parity from the above theorem since
Certmin(Parityn) = n.

3 Fourier transform of constant depth circuits

In the next lecture we will prove the following structure theorem on the Fourier spectrum of
a function computed by constant depth circuits.

Theorem 6. let f be function computed by a circuit of size s and depth d. Further let k > 0.
Then, ∑

S⊆[n] : |S|>k

f̂(S)2 ≤ 2 · s · 2−k1/d/20.
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