
Boolean function complexity

Lecturer: Nitin Saurabh
Scribe: Nitin Saurabh

Meeting: 1
17.04.2019

Let {0, 1}∗ := ∪n∈N{0, 1}n. A Boolean function f(x1, . . . , xn) over n variables is a map-
ping f : {0, 1}n → {0, 1}. Usually, we interpret 0 as False and 1 as True. Some simple
examples are,

OR(x1, . . . , xn) = 1 iff x1 ∨ x2 ∨ · · · ∨ xn = 1 iff at least one of the xi equals 1,

AND(x1, . . . , xn) = 1 iff x1 ∧ x2 ∧ · · · ∧ xn = 1 iff all xi’s equal 1,

MAJ(x1, . . . , xn) = 1 iff
n∑

i=1

xi ≥ n/2, and

Parity(x1, . . . , xn) = 1 iff
n∑

i=1

xi ≡ 1 (mod 2).

In fact, any property can be encoded as a Boolean function. For example, consider the
CLIQUE problem where given a graph G and an integer k, one asks if G contains a clique
of size k.

To encode a graph on n vertices, we may define Boolean variables xe ∈ {0, 1} for each
possible edge e in G. Recall there are

(
n
2

)
possible edges on a graph over n vertices. We

interpret Boolean values of a variable xe as whether the edge e is present in the graph or

not. That is, xe = 1 iff e is in the graph G. Thus, every input in x ∈ {0, 1}(
n
2) defines a

graph Gx on n vertices. We can then define CLIQUEn
k : {0, 1}(

n
2) → {0, 1},

CLIQUEn
k(x1, . . . , x(n

2)
) = 1 iff the graph Gx has a clique of size k.

In general, corresponding to any property we can define a Boolean function f , f(x) = 1 iff
the graph Gx has that property.

We typically study a family of Boolean functions {fn}n where fn : {0, 1}n → {0, 1}. This
corresponds to studying a language L ⊆ {0, 1}∗ such that Ln := L∩ {0, 1}n = {x ∈ {0, 1}n |
fn(x) = 1}.

1 Basic Definitions

In the following we represent OR over 2 bits by ∨, AND over 2 bits by ∧, and the negation
of a bit by ¬. Recall, ¬x = 1− x for x ∈ {0, 1}.

Definition 1. (De Morgan Circuits) A De Morgan circuit C over n variables {x1, . . . , xn} is
a directed acyclic graph (DAG) with n sources (nodes with indegree zero) and one sink (node
with outdegree zero). Further they satisfy the following properties :

1-1



• All nodes have indegree 0, 1, or 2.

• Input nodes, i.e., nodes with indegree 0, are labelled with variables {x1, . . . , xn} or
constants {0, 1}.

• All non-input nodes are called gates and are labelled with one of ∨, ∧ or ¬. Gates with
indegree 1 are labelled with ¬, whereas gates with indegree 2 are labelled with ∨ or ∧.

• The sink node, i.e., the gate with outdegree 0, is designated as the output.

Remark 1.1. Though we assume the circuit produces 1 bit of output; it is easy to generalize
the definition to circuits with more than one bit of output.

By the fan-in (resp. fan-out) of a gate we will mean the number of incoming (resp.
outgoing) edges incident on that gate. There are two important measures associated with
circuits, namely its size and depth.

Definition 2. The size of a circuit is defined to be the number of ∨ and ∧ gates that it
contains. The depth of a circuit is the length of a longest path from an input gate to the
output gate.

We now define a restriction of circuits.

Definition 3. (De Morgan Formulas) A formula is a circuit where every gate has fan-out
at most 1. That is, the underlying undirected graph is a tree.

The size of a formula is defined to be the number of leaves in its tree, and the depth of
a formula is the depth of its tree.

The crucial difference between formulas and circuits is that of the restriction on fan-out.
In the circuit model, a result computed at some gate can be reused many times by increasing
the fan-out of the gate. However in formulas, we need to recompute a function if we wish to
use its result again.

For example, we can compute Parityn on n bits with a circuit of size O(n). However we
will prove in the following lectures that Parityn requires a formula of size Ω(n2).

Remark 1.2. Sometimes the size of a circuit is also measured by the number of edges (or,
wires) in the underlying graph. Note that this measure is only quadratically larger than the
measure in Definition 2. Further, in the case of formulas it’s only linearly large.

The set of operations (or, gates) allowed in a Boolean circuit is given by a basis.

Definition 4. A basis is a finite set consisting of Boolean functions.

For example,

• De Morgan basis : {∨,∧,¬}

• Monotone basis : {∨,∧} (not universal)

• Full binary basis : all Boolean functions over 2 variables

We will mostly be working with De Morgan basis.

1-2



1.1 Uniformity vs. Non-uniformity

In a uniform model of computation, a single algorithm works for all inputs of arbitrary
length, i.e., all inputs in {0, 1}∗. For example, Turing Machines, Finite automata, etc.

On the other hand, in a non-uniform computational model, for every input length n,
we have a single algorithm working on inputs of only that length. Algorithms across differ-
ent input lengths might be completely different in their behaviour. For example, circuits,
formulas, etc.

In particular, we say that a sequence of circuits {Cn}n∈N decides a language L ⊆ {0, 1}∗
if for all n, Cn computes fn where fn : {0, 1}n → {0, 1} is such that fn(x) = 1 ⇔ x ∈
L for any x ∈ {0, 1}n.

Observe that the non-uniform model of computation is more powerful than the uniform
model. Since we are allowed to use different circuits for different input lengths and at each
input length there are only finitely many inputs, circuits can even compute undecidable
languages.

Thus, it follows that lower bounds in the non-uniform model imply lower bounds in
the uniform model. While the upper bounds in the uniform model imply upper bounds in
the non-uniform model. To illustrate, we formally note that functions computed by Turing
machines can be computed efficiently by Turing circuits.

Theorem 5. Any Turing machine running in time t(n) over inputs of length n can be
simulated by a circuit of size O(t(n)2).

An immediate and easy corollary is that proving super-polynomial lower bound on the
circuit size of any language in NP implies P 6= NP.

In the following lectures we will see some polynomial lower bounds against De Morgan
formulas. We now show that most Boolean functions are hard to compute.

2 Lower bounds

Let L(f) denote the minimal size of a De Morgan formula computing a Boolean function f .
We define L(n) := maxf : {0,1}n→{0,1} L(f). That is, L(n) is the smallest number t such that
every Boolean function on n variables can be computed by a formula of size at most t.

Theorem 6 (Riordan-Shannon (1942)). For every constant ε > 0 and sufficiently large n,

L(n) ≥ (1− ε)
2n

log n
.

Proof. The proof uses a simple counting argument :

• Count how many different Boolean functions on n variables can be computed by a
formula of size t.

• Compare it with the total number 22n of Boolean functions on n variables.

1-3



Without loss of generality we assume that all negations are only applied to the leaf nodes.
We now count the number of different formulas of size at most t.

Observe that a formula is fixed given the structure of the underlying full binary tree and
a labeling of the nodes in the tree. The number of full binary trees with t leaves is at most
4t−1. (This number is given by the Catalan number.)

We now count in how many ways we can convert a full binary tree into a De Morgan
formula. Since each leaf node can be labelled by a literal in the set {x1, . . . , xn,¬x1, . . . ,¬xn}
or constants in {0, 1}. The number of ways we can label the leaf nodes is at most (2n + 2)t.
The internal nodes can be labelled by one of ∨ or ∧. Thus, there are 2t−1 ways to label the
internal nodes. Therefore, the number of ways a tree can be converted into a De Morgan
formula is at most 2t−1(2n + 2)t.

Hence, the total number of different formulas of size at most t is at most

4t−1 · 2t−1 · (2n + 2)t ≤ (16n)t.

Comparing the above number with 22n gives the desired lower bound.

Remark 2.1. We note that the proof not only says that there exists a hard function, but in
fact almost all functions over n variables are hard. To observe this, note that (16n)t � 22n

when t = 2n/10 log n.
Another point to remark is that the lower bound is asymptotically tight. Lupanov (1960)

showed that L(n) ≤ (1 + o(1)) 2n

logn
.

We now prove a similar result for circuits.
Let C(f) denote the minimal size of a De Morgan circuit computing a Boolean function

f . We define C(n) := maxf : {0,1}n→{0,1} C(f). That is, C(n) is the smallest number t such
that every Boolean function on n variables can be computed by a circuit of size at most t.

Theorem 7 (Shannon (1949)). For every sufficiently large n, C(n) > 2n/n.

Proof. Again the proof uses counting argument similar to the proof of Theorem 6. We start
with counting the number of different circuits over n variables and of size at most t. Let
g1, g2, . . . , gt denote the gates of the circuit. To describe a circuit, it suffices to label each
gate with one of ∨, ∧, or ¬, and further describe the two incoming edges to them. Thus, the
number of such descriptions is at most(

3

(
t− 1 + 2n

2

))t

≤
(

3
(t + 2n)2

2

)t

≤ 2t(t + 2n)2t.

We now assume, without loss of generality, that no two gates in the circuit computes the
same function. Thus, permuting the labels of the t gates gives us a different description
of a circuit computing the same Boolean function. Therefore, the total number of different
Boolean functions computed by circuits of size at most t is at most

2t(t + 2n)2t

t!
≤ 2t3t(t + 2n)2t

tt
= (6t)t

(
1 +

2n

t

)2t

≤ (6t)te4n.

1-4



Setting t = 2n

n
, we have

(6t)te4n ≤ 22n(1− logn
n

)+3 2n

n
+O(logn).

Since there are 22n distinct Boolean function on n variables, we obtain the desired lower
bound.

Remark 2.2. Again we note that the proof shows that almost all Boolean functions over n
variables require large circuits.

In the next lecture we will see an asymptotically matching upper bound. That is, for
every Boolean function f on n variables, C(f) ≤ (1 + o(1))2

n

n
.

1-5


	Basic Definitions
	Uniformity vs. Non-uniformity

	Lower bounds

