
Rabbits approximate, cows compute exactly!1

Balagopal Komarath #2

IIT Gandhinagar, India3

Anurag Pandey #4

Department of Computer Science, Saarland University, Saarland Informatics Campus, Germany5

Nitin Saurabh #6

Department of Computer Science and Engineering, IIT Hyderabad, India7

Abstract8

Valiant, in his seminal paper in 1979, showed an efficient simulation of algebraic formulas by9

determinants, showing that VF, the class of polynomial families computable by polynomial-sized10

algebraic formulas, is contained in VDet, the class of polynomial families computable by polynomial-11

sized determinants. Whether this containment is strict has been a long-standing open problem. We12

show that algebraic formulas can in fact be efficiently simulated by the determinant of tetradiagonal13

matrices, transforming the open problem into a problem about determinant of general matrices14

versus determinant of tetradiagonal matrices with just three non-zero diagonals. This is also optimal15

in a sense that we cannot hope to get the same result for matrices with only two non-zero diagonals16

or even tridiagonal matrices, thanks to Allender and Wang (Computational Complexity’16) which17

showed that the determinant of tridiagonal matrices cannot even compute simple polynomials like18

x1x2 + x3x4 + · · · + x15x16.19

Our proof involves a structural refinement of the simulation of algebraic formulas by width-320

algebraic branching programs by Ben-Or and Cleve (SIAM Journal of Computing’92). The tetradi-21

agonal matrices we obtain in our proof are also structurally very similar to the tridiagonal matrices22

of Bringmann, Ikenmeyer and Zuiddam (JACM’18) which showed that, if we allow approximations23

in the sense of geometric complexity theory, algebraic formulas can be efficiently simulated by the24

determinant of tridiagonal matrices of a very special form, namely the continuant polynomial. The25

continuant polynomial family is closely related to the Fibonacci sequence, which was used to model26

the breeding of rabbits. The determinants of our tetradiagonal matrices, in comparison, is closely27

related to Narayana’s cows sequences, which was originally used to model the breeding of cows.28

Our result shows that the need for approximation can be eliminated by using Narayana’s cows29

polynomials instead of continuant polynomials, or equivalently, shifting one of the outer diagonals of30

a tridiagonal matrix one place away from the center.31

Conversely, we observe that the determinant (or, permanent) of band matrices can be computed32

by polynomial-sized algebraic formulas when the bandwidth is bounded by a constant, showing that33

the determinant (or, permanent) of bandwidth k matrices for all constants k ≥ 2 yield VF-complete34

polynomial families. In particular, this implies that the determinant of tetradiagonal matrices in35

general and Narayana’s cows polynomials in particular yield complete polynomial families for the36

class VF.37

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory38

of computation → Computational complexity and cryptography; Theory of computation → Circuit39

complexity40

Keywords and phrases Algebraic complexity theory, Algebraic complexity classes, Determinant41

versus permanent, Algebraic formulas, Algebraic branching programs, Band matrices, Tridiagonal42

matrices, Tetradiagonal matrices, Continuant, Narayana’s cow sequence, Padovan sequence43

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.XX44

Acknowledgements We thank Arkadev Chattopadhyay for herding us towards this beautiful problem45

and sharing his insights! We also thank Meena Mahajan for bringing the reference [3] to our notice.46

We also thank the organizers of GCT2022 workshop for hosting a talk by Avi Wigderson which47

prompted us towards this investigation.48

© Balagopal Komarath, Anurag Pandey, and Nitin Saurabh;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editor: Robert Ganian, Alexandra Silva, and Stefan Szeider; Article No. XX; pp. XX:1–XX:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bkomarath@rbgo.in
mailto:anurag.pandey3113@gmail.com
mailto:nitin@cse.iith.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2022.XX
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Rabbits approximate, cows compute exactly!

1 Introduction49

Valiant in his seminal work [19] laid the foundation for investigation of algebraic analog50

of the P versus NP problem, the flagship problem of theoretical computer science. He51

introduced algebraic formulas and determinants as models for computing polynomial fam-52

ilies and identified them as notions of efficient computation, while the permanent family,53

pern(x11, . . . , xnn) :=
∑

σ∈Sn

∏n
i=1 xi,σ(i) was identified as a family that is highly likely to be54

hard to compute. He defined the complexity class VF as the set of polynomial families that55

can be computed by formulas of polynomially-bounded size, and VDet as the set of families56

that can be expressed as the determinant of a symbolic matrix of polynomially-bounded57

dimension. He also showed, among other things, that a polynomial computable by an58

algebraic formula of size s can be expressed as the determinant of a symbolic matrix of size59

(s + 2) × (s + 2), thus showing the containment VF ⊆ VDet. Conversely, the smallest known60

formulas for the determinant family, detn(x11, . . . , xnn) :=
∑

σ∈Sn
sgn(σ)

∏n
i=1 xi,σ(i), have61

size nO(log n) [11, 6]. Thus the two notions of efficient computation are not known to be62

equivalent. It is a long standing open problem whether algebraic formulas of polynomial size63

exist for the determinant family.64

▶ Problem 1. Is the determinant family strictly more expressive than algebraic formulas?65

In other words, is VF ⊊ VDet?66

An improved construction of a formula for the determinant family has resisted all attempts67

for long, which can be interpreted as an evidence to an affirmative answer to Problem 1.68

Though the relationship between the classes VF and VDet is poorly understood as of now,69

they themselves are very natural otherwise. Not only they contain many natural examples of70

polynomial families, there are many differing, but equivalent, ways to define them too.71

For example, the class VDet is equivalently captured by the model of algebraic branching72

programs of polynomial size, denoted VBP. Recall, an algebraic branching program is a73

directed acyclic graph G with two special nodes, say s (source node) and t (sink node),74

and edges labeled with variables or constants. For every s-to-t path p in G we associate75

a monomial mp obtained by multiplying the edge labels on this path. The polynomial76

computed by the algebraic branching program G is defined to be the sum over all monomials77

given by s-to-t paths, i.e.,
∑

p : s-to-t path p mp. Rephrasing the characterization, we know78

VDet = VBP. We can assume, wlog, branching programs to be layered, i.e., the vertices79

are topologically ordered in layers, from left to right, such that the edges only go between80

consecutive layers. Then the width of a branching program is defined to be the maximum81

number of vertices in any one layer.82

In an influential work, Ben-Or and Cleve [5] showed that branching programs of constant83

width characterize formulas. In other words, they showed VF = VBP3, where VBP3 denotes84

the class of algebraic branching programs of width 3 and polynomial size. In light of this,85

Problem 1 can be rephrased as asking whether VBP3 ⊊ VBP, that is, whether algebraic86

branching programs of width 3 are computationally strictly weaker than algebraic branching87

programs of arbitrary width. This seems even more likely when phrased this way!88

In a recent work, Bringmann, Ikenmeyer and Zuiddam [8] took this one step further by89

showing that the topological closure of VF is equivalent to the topological closure of VBP2,90

i.e. VF = VBP2, where VBP2 is the class corresponding to algebraic branching programs of91

width 2! Stated differently, they showed that algebraic branching programs of width 2 can92

efficiently approximate all polynomials that are efficiently computed (or, approximated) by93

algebraic formulas. In fact, the equivalent width 2 algebraic branching programs given by94

the reduction have very special structure, which make them equivalent to the determinant of95



B. Komarath, A. Pandey, and N. Saurabh XX:3

tridiagonal symbolic matrices of a very special form. These tridiagonal matrices have non-96

trivial entries, variables and constants, on the main diagonal while the other two diagonals97

are fixed to all ±1s. Determinant of such tridiagonal symbolic matrices is well-studied in98

the literature and is known as the continuant, deriving its name from continued fractions99

since continuants are used to represent the convergents of continued fractions. They are also100

related to the Fibonacci sequence via the following recursive definition: F0 := 1, F1 := x1,101

and Fn := xnFn−1 + Fn−2 for all n ≥ 2. Thus, for a positive resolution of Problem 1, it is102

sufficient to show that the determinant of certain family of tridiagonal matrices, namely the103

continuant family {Fn}, cannot efficiently approximate the determinant of general matrices.104

The continuant is known to have rich algebraic structures [15, 10, 9, 16], which may be105

helpful in separating VF from VDet. Although quite promising, an additional challenge this106

formulation poses is that we now need to deal with approximations. In other words, we need107

to show a stronger separation VF ⊊ VDet. It would be very pleasing if we could have the108

result of Bringmann, Ikenmeyer and Zuiddam [8] without using approximations. That is, if109

the following would be true – the continuant family {Fn} can efficiently exactly simulate110

formulas. However, such a result is an impossibility! Allender and Wang [4] showed that the111

simple polynomial, x1x2 + x3x4 + · · · + x15x16, cannot even be expressed by the continuant112

family, irrespective of efficiency. Thus, one may wonder what is the simplest class of matrices113

whose determinants can efficiently exactly simulate algebraic formulas?114

Motivated by this question, we study the determinant of matrices with few diagonals,115

also known as band matrices, and identify two polynomial families that are as simple as the116

continuant family {Fn}, but unlike it they simulate formulas exactly and efficiently.117

The Narayana’s cows polynomial. The m-th polynomial in this family, denoted Nm(x1,. . .118

, xm), is defined by the recurrence N0 := 1, N1 := x1, N2 := x1x2, and Nm = xmNm−1 +119

Nm−3 for all m ≥ 3. Just as the continuant polynomial is based on the Fibonacci sequence,120

the Narayana’s cows polynomial is based on the Narayana’s cows sequence [1, 20]. This121

sequence originated in the following problem studied by the 14-th century mathematician122

Narayana Pandita in his book Ganita Kaumudi [17]: A cow produces a calf every year. Cows123

start producing calves from the beginning of the fourth year. Then, starting from 1 cow124

in the first year, how many cows are there after m years? This sequence is given by the125

recurrence: Nm = Nm−1 + Nm−3 with N0 = N1 = N2 = 1, where Nm−1 gives the population126

after m years. Thus, the sequence captures the growth in the population of cows in the127

same way as the Fibonacci sequence captures the growth in the population of rabbits. The128

Narayana’s cows sequence has wide applications in combinatorics. (See, e.g., [1, 13] and129

references therein.)130

The Padovan polynomial. The recurrences for Fibonacci and Narayana’s cows sequences131

are similar. Exploring this similarity and considering the only remaining two-term recurrence:132

Pn = Pn−2 +Pn−3, we obtain another lesser known cousin of Fibonacci, called as the Padovan133

sequence [2, 22, 18]. Analogously, we can define the Padovan polynomial via the recurrence134

P0 := 1, P1 := 0, P2 := x1, and Pn = xn−1Pn−2 + Pn−3 for all n ≥ 3. This generalizes the135

univariate Padovan polynomial that is known in the literature [21].136

Our results complement the results of Bringmann, Ikenmeyer and Zuiddam [8] by showing137

that the aforementioned polynomial families, namely Narayana’s cows and Padovan, based138

on the lesser known cousins of Fibonacci, are complete for the class VF. In other words, both139

families can efficiently exactly simulate formulas.140

MFCS 2022



XX:4 Rabbits approximate, cows compute exactly!



x1 −1

1

−1
1 xn


(a) Continuant polynomial
Fn := xnFn−1 + Fn−2



x1 0 1

1
1

0
1 xm


(b) Narayana’s cows polynomial
Nm := xmNm−1 + Nm−3



0 −x1 1

1
1

−xn−1

1 0


(c) Padovan polynomial
Pn := xn−1Pn−2 + Pn−3

Figure 1 Polynomial families defined by determinants of simple matrices and their recurrences

1.1 Our findings141

We discover the simplest class of matrices whose determinants characterize algebraic formulas.142

We find that tetradiagonal matrices of a very special form suffice for this purpose.143

▶ Theorem 2 (Informal). The determinant family of tetradiagonal symbolic matrices is144

polynomially equivalent to algebraic formulas.145

In fact, the tetradiagonal matrices (Figures 1b and 1c) that is sufficient for efficiently146

simulating algebraic formulas are remarkably similar to the tridiagonal matrices (Figure 1a)147

used by Bringmann, Ikenmeyer and Zuiddam [8] to efficiently approximate algebraic formulas.148

It follows from the above theorem and Allender and Wang’s separation [4], that tetradiagonal149

matrices are more expressive than tridiagonal matrices, but at the same time it can also150

be seen (Figure 1) to be nearly as simple as tridiagonal matrices – having just one extra151

diagonal whose entries are all 0s! We thus have the following equivalent reformulation of152

Problem 1.153

Is the minimum size of a tetradiagonal matrix whose determinant equals detn su-154

perpolynomially large, where detn is the determinant of a general n × n symbolic155

matrix?156

This further motivated us to investigate matrices with few non-zero diagonals. Such157

matrices are called band matrices in the literature. We say that a matrix M is a band158

matrix of type (k1, k2) if all the non-zero entries of the matrix is concentrated between159

k1 diagonals below the main diagonal and k2 diagonals above the main diagonal. That is,160

Mij = 0 if j < i − k1 or j > i + k2. A band matrix of type (k1, k2) will also be referred as161

(k1, k2)-diagonal matrix. The bandwidth of such matrices are defined to be k := max(k1, k2).162

For example, diagonal matrices are (0, 0)-diagonal and has bandwidth 0, tridiagonal163

matrices are (1, 1)-diagonal with bandwidth 1, tetradiagonal matrices are either (1, 2)-164

diagonal or (2, 1)-diagonal with bandwidth 2, and pentadiagonal matrices are (2, 2)-diagonal165

with bandwidth 2. Figures 1b and 1c are examples of (1, 2)-diagonal matrices.166

If follows from Theorem 2 that (1, 2)-diagonal matrices can simulate formulas, and167

hence any (k1, k2)-diagonal matrix can simulate formulas as long as min(k1, k2) ≥ 1 and168

max(k1, k2) ≥ 2. It is then interesting to investigate the converse, i.e., for which (k1, k2)-169

diagonal matrices their determinants have small formulas?170

We observe that determinants of bandwidth k matrices can be computed by polynomial-171

sized algebraic formulas when the bandwidth k is bounded by a constant. In fact, our172

constructions give efficient syntactic multilinear ABPs and circuits for low bandwidth173



B. Komarath, A. Pandey, and N. Saurabh XX:5

matrices. These are circuits for which every intermediate polynomial that is computed is also174

multilinear. In comparison, polynomial size circuits for the determinant of general matrices175

given by Berkowitz [6] and polynomial size ABPs given by Mahajan and Vinay [14] are176

non-multilinear.177

▶ Theorem 3 (Informal). Determinants of symbolic band matrices are computable by178

polynomial-sized algebraic formulas when bandwidth is bounded by a constant.179

In fact, the above theorem holds for the permanent of a band matrix too. Combining180

Theorems 2 and 3, we get a nice characterization of algebraic formulas in terms of determinants181

(or, permanents) of band matrices of small bandwidth. In other words, determinants of182

band matrices with bounded bandwidth yield polynomial families which are complete for the183

complexity class VF.184

▶ Theorem 4 (Informal). For all constant k ≥ 2, the determinant (or, permanent) family of185

symbolic matrices of bandwidth k is VF-complete.186

1.2 Proof methods187

Ideas for Theorem 2 (Simulating formulas via determinant of tetradiagonal matrices):188

We prove Theorem 2 in Section 3, where we begin with tetradiagonal matrices of type (1, 2).189

That is, the non-zero entries are limited to one diagonal below the main diagonal, the main190

diagonal, and two diagonals above the main diagonal. We first show that the symbolic191

determinant of such tetradiagonal matrices can be written as a product of 3 × 3 matrices192

whose entries are variables (or their negations), 0, and 1, where the number of matrices193

in the product is linear in the size of the original matrix. This is obtained by exploiting a194

simple recurrence revealed while computing the determinant of these (1, 2) tetradiagonal195

matrices using Laplace expansion, see Lemma 8. Thus, to prove Theorem 2, it is sufficient196

to show that algebraic formulas can be efficiently simulated by the matrix product of the197

3 × 3 matrices obtained above. In fact, Ben-Or and Cleve, in their simulation of algebraic198

formulas using width 3 algebraic branching programs, showed that algebraic formulas can be199

efficiently simulated by the matrix product of 3 × 3 matrices. Thus, it might be tempting200

to conclude that we are already done. However, it turns out that the 3 × 3 matrices whose201

products equals the determinant of tetradiagonal matrices desire more structure than the202

matrices used in the proof of Ben-Or and Cleve. This is where the core technical novelty203

of our work lies — we show that algebraic formulas can indeed be efficiently simulated by204

product of 3 × 3 matrices of the form whose products are equivalent to the determinant205

of (1, 2)-tetradiagonal matrices. In fact, we are able to efficiently simulate formulas with206

even more structure on the matrices, allowing us to conclude that formulas can be efficiently207

simulated by tetradigonal matrices where the variable entries are only on the main diagonal,208

the diagonal below the main diagonal is all 1s, whereas the two diagonals above the main209

diagonal are all 0s and all 1s respectively, see Section 3.1 for details.210

Ideas for Theorem 3 (Formulas for determinant of symbolic band matrices): Theorem 3211

is relatively simpler to derive from the literature. We prove it in Section 4 taking two different212

constructions for computing determinants of general matrices and carefully specializing those213

constructions in the case of bandwidth k matrices, ensuring that the undesirable blowups214

are limited to parameter k, allowing us to get polynomial-sized formulas when k is bounded215

by a constant. In our first construction, we modify the construction of Grenet for computing216

permanent of an n×n matrix using algebraic branching programs. For bandwidth k matrices,217

MFCS 2022



XX:6 Rabbits approximate, cows compute exactly!

we are able to get syntactic multilinear ABPs of length linear in the size of matrix and218

exponential in the bandwidth, see Theorem 18 for details. Applying standing conversion219

from ABPs to formulas yield Theorem 3. This gives us a formula of depth O(k log(n))220

and the size nO(k). In our second construction, we adapt generalized Laplace expansion to221

low bandwidth matrices, see Theorem 22 for details. The construction yields a syntactic222

multilinear arithmetic circuit of size O(exp(k)n) and depth O(poly(k) log(n)), which can be223

converted to algebraic formulas using standard conversion from circuit to formulas, giving an224

alternative proof of Theorem 3.225

The rest of this paper is organized as follows: Section 3 gives efficient simulations of226

algebraic formulas via determinant of tetradiagonal symbolic matrices. Subsections 3.1 and227

3.2 show that Narayana’s cows polynomials and Padovan polynomials are complete for VF.228

Section 4 shows that determinants of all matrices with constant bandwidth have polynomial229

size formulas. We also explore approximations by tetradiagonal matrices in Appendix B.230

2 Preliminaries231

▶ Definition 5. A polynomial f(x) ∈ F[x1, x2, . . . , xn] is a projection of a polynomial232

g(y) ∈ F[y1, . . . , ym], denoted f ≤ g, if and only if233

f(x1, . . . , xn) = g(a1, . . . , am),234

where ai ∈ F ∪ {x1, x2, . . . , xn}.235

▶ Definition 6. A polynomial family (fn) is a p-projection of another family (gm), denoted236

(fn) ≤p (gm) if and only if there exists a polynomially bounded function t(n) such that237

fn ≤ gt(n) for all n.238

▶ Definition 7. A polynomial family f = (fn) is said to be complete for a class C if and only239

if f ∈ C and for all g ∈ C, g ≤p f .240

3 Determinant of (1, 2)-diagonal matrix versus algebraic formulas241

In this section, we show that the determinants of (1, 2)-diagonal symbolic matrices are242

polynomially equivalent to algebraic formulas, thereby, proving Theorem 2. We begin with243

the easier direction, that is, by showing that the determinant of (1, 2)-diagonal symbolic244

matrix has polynomial-sized algebraic formulas. In fact, we give a polynomial-sized algebraic245

branching programs for them of width-3, which can then be converted into a polynomial-sized246

formula using a divide and conquer algorithm.247

▶ Lemma 8. The determinant (or, permanent) of (1, 2)-diagonal symbolic matrix of di-248

mensions n × n can be computed by a width-3 syntactic multilinear ABP of length at most249

3n − 2.250

In particular, they can be computed by (syntactic) multilinear formulas of size poly(n).251

Proof. Let M denote the following (1, 2)-diagonal symbolic matrix,252

M =



x11 x12 x13

x21

xn−2,n

xn−1,n

xn,n−1 xn,n


. (1)253

254



B. Komarath, A. Pandey, and N. Saurabh XX:7

For 0 ≤ i ≤ n − 1, define K(n − i) to be the determinant of the principal submatrix of255

M obtained by deleting both the first i rows and columns. Furthermore, set K(0) := 1 and256

K(−1) := 0. Note that, by definition, K(n) = det(M) and K(1) = xnn. Then we have the257

following recursive formula for K(n):258

K(n) = x11K(n − 1) − x12x21K(n − 2) + x13x32x21K(n − 3). (2)259

The correctness of the above formula easily follows from a backward induction on i. Rewriting260

the recurrence in a matrix form we obtain261  K(n)
K(n − 1)
K(n − 2)

 =

x11 −x12x21 x13x32x21
1 0 0
0 1 0

 K(n − 1)
K(n − 2)
K(n − 3)

 (3)262

=

x21 x11 0
0 1 0
0 0 1

 0 −x12 x13
1 0 0
0 1 0

 1 0 0
0 1 0
0 0 x32

 K(n − 1)
K(n − 2)
K(n − 3)

 (4)263

264

Unrolling Eq. (4) and using K(1) = xnn, K(0) = 1, and K(−1) = 0 we obtain the claimed265

width-3 ABP for K(n). ◀266

We now consider a special kind of (1, 2)-diagonal symbolic matrices where entries in both267

the lowermost and the uppermost diagonals are only 1. We show that the determinant (or,268

permanent) of such a matrix is equivalent to a special kind of width-3 ABP. These matrices269

would serve as the key building block in our main proofs. However, we first need a name for270

the special kind of (1, 2)-diagonal matrices that we are going to be dealing with.271

▶ Definition 9. Let (α, β, γ, δ) ∈ (F ∪ {∗})4. A (1, 2)-diagonal matrix is said to be of type272

(α, β, γ, δ) if all entries on the lowermost diagonal, main diagonal, first upper diagonal and273

second upper diagonal equals α, β, γ and δ respectively. Furthermore, if α, β, γ, or δ equals274

∗ then the entries on the respective diagonals are not restricted.275

For example, a general (1, 2)-diagonal symbolic matrix, shown in Equation 1, is of type276

(∗, ∗, ∗, ∗) and a (1, 2)-diagonal matrix of type (α, β, γ, δ) ∈ F4 is also a Toeplitz matrix.277

The special kind of (1, 2)-diagonal matrices that we consider are of type (1, ∗, ∗, 1). We278

now characterize the determinant of such matrices by a restricted width-3 ABP where the279

interconnections between layers are given by a special 3 × 3 matrix.280

▶ Lemma 10. Let M denote the following (1, 2)-diagonal symbolic matrix of type (1, ∗, ∗, 1)281

of dimension n × n:282

M =



x11 x12 1

1

1

xn−1,n

1 xn,n


.283

284

Then, det(M) is given by the (1, 1) entry of the following iterated matrix multiplication over285

3 × 3 matrices,286 x11 −x12 1
1 0 0
0 1 0

 x22 −x23 1
1 0 0
0 1 0

 · · · · · ·

x(n−1)(n−1) −x(n−1)n 1
1 0 0
0 1 0

 xnn 0 1
1 0 0
0 1 0

 .287

288

MFCS 2022



XX:8 Rabbits approximate, cows compute exactly!

Conversely, the (1, 1) entry of the following iterated matrix multiplication:289 α1 β1 1
1 0 0
0 1 0

 α2 β2 1
1 0 0
0 1 0

 · · · · · ·

α(n−1) β(n−1) 1
1 0 0
0 1 0

 αn βn 1
1 0 0
0 1 0

 ,290

291

is given by the determinant of the following (1, 2)-diagonal matrix of type (1, ∗, ∗, 1),292

M =



α1 −β1 1

1

1

−βn−1

1 αn


.293

294

Proof. The equivalence follows from observing that in this special case the recurrence of (3)295

becomes296  K(n)
K(n − 1)
K(n − 2)

 =

x11 −x12 1
1 0 0
0 1 0

 K(n − 1)
K(n − 2)
K(n − 3)

 ,297

=

x11 −x12 1
1 0 0
0 1 0

 · · ·

x(n−1)(n−1) −x(n−1)n 1
1 0 0
0 1 0

  K(1)
K(0)

K(−1)

 ,298

299

where K(i), −1 ≤ i ≤ n, as defined in the proof of Lemma 8, is the determinant of the300

principal submatrix of M obtained by deleting both the first n − i rows and columns with301

K(0) = 1 and K(−1) = 0. ◀302

3.1 Narayana’s cows polynomial is VF-complete303

In this section, we simulate algebraic formulas with tetradiagonal matrices of type (1,∗,0,1).304

The determinant of such matrices follow the same recurrence as that of Narayana’s cows305

polynomial described in Section 1. This simulation along with Lemma 8 finishes the proof of306

completeness of Narayana’s cows polynomial families for the class VF.307

We know from Lemma 10 that the determinant (or, permanent) of (1, 2)-diagonal matrices308

of type (1, ∗, 0, 1) is equivalent to the (1, 1) entry of an iterated matrix multiplication where309

the base matrices are of the form:

∗ 0 1
1 0 0
0 1 0

. For notational convenience, let us denote the310

base matrix

z 0 1
1 0 0
0 1 0

 by A(z). In the following we will only work with iterated matrix311

multiplication over the base matrix A(∗) and use the equivalence given by Lemma 10 to312

represent the matrix product as the determinant (or, permanent) of (1, 2)-diagonal matrix of313

type (1, ∗, 0, 1).314

For a better understanding of the algorithm we will present the algorithm in a recursive315

way. In particular we will have intermediate computations where the matrices will be of the316

form

0 f 1
1 0 0
0 1 0

. We will denote such matrices by B(f). Note that A(0) = B(0). We now317

state and prove our simulation of formulas as a product of base matrices A(z).318



B. Komarath, A. Pandey, and N. Saurabh XX:9

▶ Lemma 11. Let p be a polynomial computed by a formula of depth d. Then, both A(p) and319

A(−p) can be expressed as an iterated matrix multiplication of length at most 30 · 4d − 29 over320

the base matrices A(z), where z is either a field constant, a variable, or a negated variable.321

Proof. The proof is by induction on depth.322

Base case: d = 0. Then it computes either a field constant, a variable or a negated323

variable which can be represented by a single base matrix A(z), where z is the label of the324

node.325

Induction step: d = m. There are two cases to be considered depending on whether the326

node at depth m is an addition or a multiplication node.327

Case 1: (Addition). Suppose p = f + g, where f and g are computable by depth328

m − 1 formulas. By induction hypothesis, we can express both A(f) and A(g). Then,329

A(p) = A(f) · A(0) · A(0) · A(g). In other words,330 f + g 0 1
1 0 0
0 1 0

 =

f 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 g 0 1
1 0 0
0 1 0

 .331

Similarly one can express A(−p).332

Case 2: (Multiplication). Suppose p = f · g, where f and g are computable by depth333

m − 1 formulas. We will use the following equation to compute f · g.334

A(f · g) = A(0) · A(0) · B(−g) · B(f) · A(0) · B(g) · B(−f). (5)335
336

We will now show how to compute B(f) using matrices of type A(·) which will complete337

the recursive algorithm. Similar to Eq. (5), the following equation computes B(f · g) using338

matrices of type A(·).339

B(f · g) = A(0) · A(−f) · A(0) · A(g) · A(f) · A(0) · A(−g). (6)340
341

We can thus use appropriate substitutions in Eq. (6) to get B(f), B(g), B(−f), and B(−g)342

and complete the algorithm. However, note that to compute B(f) we need to make two calls343

to f as A(−f) and A(f). This would result in a total length of O(8d). To bring down the344

length to O(4d), we now show how to compute B(f) using a single call to A(f). Consider345

the following equation:346

B(f) = A(0) · B(−1) · A(0) · A(1) · A(f) · A(0) · A(−1) · B(1) · A(0) · A(0). (7)347
348

We can use Eq. (6) to obtain B(−1) and B(1), thus completing the algorithm to compute349

B(f) with a single call to A(f). We can now use equations (5) and (7) to compute A(f · g).350

Similarly one can express A(−p).351

The upper bound on the length of the iterated matrix multiplication follows from the352

following recurrence: T (d) ≤ 4 · T (d − 1) + 87 and T (0) = 1. ◀353

As a corollary to Lemmas 8 and 11, we obtain the following characterization of formulas.354

▶ Theorem 12. Let Mn denote the following (1, 2)-diagonal symbolic matrix of type (1, ∗, 0, 1)355

of dimension n × n:356

Mn =



x1 0 1

1
1

0
1 xn

.357

MFCS 2022



XX:10 Rabbits approximate, cows compute exactly!

Then the sequences of polynomials {det(Mn)}n≥1 and {per(Mn)}n≥1 are VF-complete358

with respect to p-projections.359

Proof. Follows from Lemmas 8 and 11, and depth reduction of formulas [7]. ◀360

We are now all set to deduce the completeness of the Narayana’s Cows polynomial family361

for class VF.362

▶ Theorem 13. Narayana’s cows polynomial family is VF-complete.363

Proof. We observe that the determinants of the sequence of (1, 2)-diagonal symbolic matrices364

of type (1, ∗, 0, 1) follow the recurrence Nm = xmNm−1+Nm−3 for all m ≥ 3, which is precisely365

the recurrence defining the Narayana’s cows polynomials as described in Section 1. ◀366

3.2 Padovan polynomial is VF-complete367

In this section, we simulate algebraic formulas with tetradiagonal matrices of type (1, 0, ∗, 1)368

instead. This time, the determinant of such matrices follow the same recurrence as that of369

Padovan polynomial described in Section 1. This simulation along with Lemma 8 finishes370

the proof of completeness of Padovan polynomial families for the class VF.371

Again from Lemma 10 we know that the determinant (or, permanent) of (1, 2)-diagonal372

matrices of type (1, 0, ∗, 1) is equivalent to the (1, 1) entry of an iterated matrix multiplication373

where the base matrices are of the form:

0 ∗ 1
1 0 0
0 1 0

. Recall we denote base matrices of374

the form

0 z 1
1 0 0
0 1 0

 by B(z). In the following we will only work with iterated matrix375

multiplication over the base matrix B(∗) and use the equivalence given by Lemma 10 to376

represent the matrix product as the determinant (or, permanent) of (1, 2)-diagonal matrix of377

type (1, 0, ∗, 1).378

▶ Lemma 14. Let p be a polynomial computed by a formula of depth d. Then, both B(p) and379

B(−p) can be expressed as an iterated matrix multiplication of length at most 30 ·4d −29 over380

the base matrices B(z), where z is either a field constant, a variable, or a negated variable.381

The proof is analogous to the proof of Lemma 11. We provide a proof in the appendix382

(see proof of Lemma 27).383

As a corollary to Lemmas 8 and 14, we obtain another characterization of formulas.384

▶ Theorem 15. Let Mn denote the following (1, 2)-diagonal symbolic matrix of type (1, 0, ∗, 1)385

of dimension n × n:386

Mn =



0 x1 1

1
1

xn−1

1 0

.387

Then the sequences of polynomials {det(Mn)}n≥2 and {per(Mn)}n≥2 are VF-complete388

with respect to p-projections.389



B. Komarath, A. Pandey, and N. Saurabh XX:11

Proof. The containment in VF follows from Lemma 8. While the hardness follows by390

translating the iterated product in Lemma 14 to a (1, 2)-diagonal symbolic matrix of type391

(1, 0, ∗, 1) using Lemma 10. Note that to apply Lemma 10 one has to multiply the iterated392

product on the right by B(0) (to move the polynomial to (1, 1) entry). However, this only393

increases the length by 1. Finally using the depth reduction of formulas [7] completes the394

proof. ◀395

We are now all set to deduce the completeness of Padovan polynomial family for class VF.396

▶ Theorem 16. Padovan polynomial family is VF-complete.397

Proof. We observe that the determinants of the sequence of (1, 2)-diagonal symbolic matrices398

of type (1, 0, ∗, 1) in Theorem 15 follow the recurrence Pn = xn−1Pn−2 + Pn−3, for all n ≥ 3,399

if we negate all variables in the matrix, which is precisely the recurrence for the Padovan400

polynomials as described in Section 1. ◀401

4 Matrices of small bandwidth402

Our main goal in this section is to prove that for all fixed k, the determinant of matrices403

of bandwidth k can be computed by polynomial sized formulas. Along with the results in404

Section 3, this gives a complete characterization of the algebraic complexity of the determinant405

of constant bandwidth matrices (See Theorem 20). Following the spirit of parameterized406

algorithms, we consider the bandwidth k as a parameter, and show that we can construct407

efficient syntactic multilinear ABPs (Theorem 18) and circuits (Theorem 22) for computing408

the determinant where the undesirable blowup (exponential for size, polynomial for depth) is409

limited to the parameter k.410

Our parameterized constructions are derived from Grenet’s syntactic multilinear ABP411

construction for the n × n permanent [12] and generalized Laplace expansion that constructs412

syntactic multilinear circuits for the n × n determinant and permanent. We state the bounds413

given by those constructions below:414

▶ Lemma 17. The determinant (or, permanent) of an n × n symbolic matrix be computed by415

a syntactic multilinear circuit of size O(n2n) and depth O(n). Moreover, it can be computed416

by a syntactic multilinear ABP of length at most n + 2 and width at most
(

n
n/2

)
.417

Notice that the ABP in Lemma 17 has width that is exponential in n. Our construction418

for matrices of bandwidth k shows that this exponential blowup can be limited to k.419

▶ Theorem 18. The determinant (permanent) of a (k, k)-diagonal symbolic matrix of420

dimension n × n can be computed using a syntactic multilinear ABP of length n + 2 and421

width
(2k

k

)
.422

Proof. We begin with a high-level recall of Grenet’s construction [12]. In his construction, the423

start node is in layer 0. All monomials computed at layer i correspond to some permutation424

that maps rows [i] to some set of i columns. Further, a node in a particular layer keeps track425

of the subset of columns in the monomials computed at that node. This means that in layer426

n/2, it has to keep track of
(

n
n/2

)
distinct sets resulting in exponential (in n) width. The427

edges between layers are specified such that these invariants are preserved.428

We now build a layered ABP for small bandwidth matrices that is a modification of429

Grenet’s construction.430

For matrices of bandwidth k, we can make use of the fact that rows that are separated by431

at least 2k rows have no common non-zero columns. Therefore, instead of keeping track of a432

MFCS 2022



XX:12 Rabbits approximate, cows compute exactly!

subset of all columns, we can keep track of a subset of only a few columns. More specifically,433

any monomial computed at layer i (assume k ≤ i ≤ n − k for simplicity, the rest of the rows434

are handled similarly) must pick i columns from [i + k] since all columns further to the right435

are zero for these rows. Moreover, the columns [i − k] have to be picked by the first i rows436

since these columns are zero from row i + 1. Therefore, rows up to i must pick exactly k437

columns from the 2k sized set of columns [i − k + 1, i + k]. In layer i, we have exactly one438

node for each k sized subset of this 2k sized set. This ABP has n + 2 layers and each layer439

has at most
(2k

k

)
nodes. This is precisely where we improve over Grenet’s construction when440

specialized to matrices of bandwidth k. We describe the edge labels and give a full proof in441

the appendix (see proof of Theorem 28). ◀442

By using standard conversion from ABP to formula, we obtain the following corollary.443

▶ Corollary 19. For all fixed k, the determinant (or, permanent) of symbolic matrices of444

bandwidth k can be computed using polynomial sized formulas.445

Along with the results in Section 3, the above corollary gives a complete characterization446

of the algebraic complexity of determinant (or, permanent) of constant bandwidth matrices.447

▶ Theorem 20. For all constant k ≥ 2, the determinant (or, permanent) family of symbolic448

matrices of bandwidth k is VF-complete.449

▶ Remark 21. For completeness, we add that for k = 0 (symbolic diagonal matrices), the450

determinant (or, permanent) family is complete for width-1 ABPs, and for k = 1, the451

determinant (or, permanent) family is complete for width-2 ABPs.452

The ABP given by Theorem 18 has depth n. On the other hand, converting it to a453

formula makes the depth O(k log(n)) but the size nO(k). If we are interested in arithmetic454

circuits, we can eliminate the dependence of k in the exponent of n while keeping the455

depth logarithmic in n. Compared to Lemma 17, our construction, which is an adaption of456

generalized Laplace expansion to low bandwidth matrices, limits the exponential blowup in457

size and the polynomial blowup in depth to the parameter k.458

▶ Theorem 22. The determinant (permanent) of an n×n (k, k)-diagonal symbolic matrix can459

be computed using a syntactic multilinear circuit of size O(exp(k)n) and depth O(k log(n)).460

We give a proof in the appendix (see proof of Theorem 29).461

References462

1 OEIS Foundation Inc. (2022). Narayana’s Cows Sequence, Entry A000930 in the On-Line463

Encyclopedia of Integer Sequences. https://oeis.org/A000930, 1964. Accessed: 2022-04-26.464

2 OEIS Foundation Inc. (2022). Padovan Sequence, Entry A000931 in the On-Line Encyclopedia465

of Integer Sequences. https://oeis.org/A000931, 1964. Accessed: 2022-04-26.466

3 E. Allender, V. Arvind, and M. Mahajan. Arithmetic complexity, kleene closure, and formal467

power series. Theory Comput. Syst., 36(4):303–328, 2003.468

4 E. Allender and F. Wang. On the power of algebraic branching programs of width two. Comput.469

Complex., 25(1):217–253, 2016.470

5 M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers.471

SIAM J. Comput., 21(1):54–58, 1992.472

6 S. J. Berkowitz. On computing the determinant in small parallel time using a small number of473

processors. Information Processing Letters, 18(3):147–150, 1984.474

7 R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–206,475

1974.476

https://oeis.org/A000930
https://oeis.org/A000931


B. Komarath, A. Pandey, and N. Saurabh XX:13

8 K. Bringmann, C. Ikenmeyer, and J. Zuiddam. On algebraic branching programs of small477

width. J. ACM, 65(5):32:1–32:29, 2018.478

9 C. Conley and V. Ovsienko. Lagrangian Configurations and Symplectic Cross-Ratios. Math-479

ematische Annalen, pages 1105–1145, 2018.480

10 C. Conley and V. Ovsienko. Rotundus: Triangulations, Chebyshev Polynomials, and Pfaffians.481

Math Intelligencer, 40:45–50, 2018.482

11 L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing, 5(4):618–483

623, 1976.484

12 B. Grenet. An Upper Bound for the Permanent versus Determinant Problem. Manuscript,485

2011.486

13 X. Lin. On the Recurrence Properties of Narayana’s Cows Sequence. Symmetry, 13(1), 2021.487

URL: https://www.mdpi.com/2073-8994/13/1/149.488

14 M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Electron.489

Colloquium Comput. Complex., 4, 1997.490

15 S. Morier-Genoud. Coxeter’s Frieze Patterns at the Crossroads of Algebra, Geometry and491

Combinatorics. Bulletin of the London Mathematical Society, 47(6):895–938, 2015.492

16 S. Morier-Genoud and V. Ovsienko. Farey Boat: Continued Fractions and Triangulations,493

Modular Group and Polygon Dissections. Jahresber. Dtsch. Math. Ver., 121:91–136, 2019.494

17 Narayana Pandita. Ganita Kaumudi. India, 1356.495

18 I. Stewart. Tales of a neglected number. Scientific American, 274(6):102–103, 1996. URL:496

http://www.jstor.org/stable/24989576.497

19 L. G. Valiant. Completeness Classes in Algebra. In Proceedings of the Eleventh Annual ACM498

Symposium on Theory of Computing, STOC ’79, pages 249–261, 1979.499

20 Wikipedia contributors. Narayana Pandita (mathematician). https://en.wikipedia.org/w/500

index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682, 2022. [Online;501

accessed 26-April-2022].502

21 Wikipedia contributors. Padovan Polynomials. https://en.wikipedia.org/w/index.php?503

title=Padovan_polynomials&oldid=1080802324, 2022. [Online; accessed 27-April-2022].504

22 Wikipedia contributors. Padovan Sequence. https://en.wikipedia.org/w/index.php?505

title=Padovan_sequence&oldid=1078995920, 2022. [Online; accessed 27-April-2022].506

A (1, k)-diagonal matrices507

The recursive algorithm (Lemma 8) to compute the determinant (or, permanent) of (1, 2)-508

diagonal matrices can be generalized analogously to (1, k)-diagonal matrices. In particular,509

the following proposition is known to hold.510

▶ Proposition 23. The determinant (or, permanent) of (1, k)-diagonal symbolic matrix of511

dimension n × n can be computed by a syntactic multilinear ABP of length at most O(kn)512

and width at most 2k + 1.513

In particular, for constant k, they can be computed by (syntactic) multilinear formulas of514

size poly(n).515

It follows, using Theorem 12, that the determinant families of (1, k)-diagonal symbolic516

matrices for constant k are complete for the class VF. On the other hand, the determinant517

family of (1, n)-diagonal symbolic matrices is known to be complete for the class VDet [3].518

B Approximation by Narayana’s cows or Padovan polynomials519

Recall that Lemmas 11 and 14 requires a length of O(4d) to simulate a formula of depth d.520

We now show that instead if we approximate a formula of depth d then we can reduce the521

length to O(3d).522

MFCS 2022

https://www.mdpi.com/2073-8994/13/1/149
http://www.jstor.org/stable/24989576
https://en.wikipedia.org/w/index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682
https://en.wikipedia.org/w/index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682
https://en.wikipedia.org/w/index.php?title=Narayana_Pandita_(mathematician)&oldid=1071293682
https://en.wikipedia.org/w/index.php?title=Padovan_polynomials&oldid=1080802324
https://en.wikipedia.org/w/index.php?title=Padovan_polynomials&oldid=1080802324
https://en.wikipedia.org/w/index.php?title=Padovan_polynomials&oldid=1080802324
https://en.wikipedia.org/w/index.php?title=Padovan_sequence&oldid=1078995920
https://en.wikipedia.org/w/index.php?title=Padovan_sequence&oldid=1078995920
https://en.wikipedia.org/w/index.php?title=Padovan_sequence&oldid=1078995920


XX:14 Rabbits approximate, cows compute exactly!

Following [8], for any matrix M with entries in F(ε)[x], we use the notation M +O(εk) for523

a matrix with (i, j) entry being M [i, j] + O(εk), where O(εk) denotes the set εk F[ε, x]. For524

a polynomial f ∈ F[x], we will express some matrix in the set A(f) + O(ε) (or, B(f) + O(ε))525

as an iterated product over the base matrix A(z) (respectively B(z)) where z is either a526

constant from F(ε), a variable, or a negated variable. We now state the lemmas that allow527

to simulate additions and multiplications.528

▶ Lemma 24. Let f and g ∈ F[x] be such that some F ∈ A(f) + O(εk) and some G ∈529

A(g) + O(εk) for k ≥ 1 are expressible as iterated products, over the base matrices, of530

lengths at most ℓf and ℓg, respectively. Then, some matrix H ∈ A(f + g) + O(εk) and some531

H ′ ∈ A(−f − g) + O(εk) can be expressed as an iterated product of length at most ℓf + ℓg + 2.532

Furthermore, if the error degree of F and G are ef and eg, respectively, then the error degree533

of H and H ′ is at most ef + eg.534

Proof. It is the same proof as in the case of addition in Lemma 11. ◀535

▶ Lemma 25. Let f and g ∈ F[x] be such that some F ∈ A(f) + O(ε3) and some G ∈536

A(g)+O(ε3) are expressible as iterated products, over the base matrices, of lengths at most ℓf537

and ℓg, respectively. Then, some matrix H ∈ A(f · g) + O(ε) and some H ′ ∈ A(−f · g) + O(ε)538

can be expressed as an iterated product of length at most 2ℓf + ℓg + 64. Furthermore, if the539

error degree of F and G are ef and eg, respectively, then the error degree of H and H ′ is at540

most 2ef + eg + 6.541

Proof. We discover the following identities which can be easily verified:542 f · g 0 1
1 0 0
εg 1 0

 = B(f/ε) · B(0) · B(εg) · B(−f/ε), and (8)543

544

545

B(ε · g) = A(0) · B(−1/ε) · A(0) · A(ε) · A(g) · A(0) · A(−ε) · B(1/ε) · A(0) · A(0). (9)546
547

To obtain some matrix H ∈ A(f ·g)+O(ε), we use identity (8) and to obtain matrices of type548

B(·) we use identity (9). We can use (6) to obtain B(ε), B(−ε), B(1/ε) and B(−1/ε). ◀549

From the above two lemmas, we obtain the following approximate simulation of formulas.550

▶ Theorem 26. Let p be a polynomial computed by a formula of depth d. Then, some matrix551

H ∈ A(p) + O(ε) can be expressed as an iterated matrix multiplication of length at most552

33 · 3d − 32 over the base matrices A(z), where z is either a constant in F(ε), a variable, or553

a negated variable. Furthermore, H has error degree at most 3(3d − 1).554

The above theorem also holds when we consider iterated matrix multiplication over the base555

matrix B(·).556

C Missing proofs557

▶ Lemma 27 (Lemma 14 restated). Let p be a polynomial computed by a formula of depth d.558

Then, both B(p) and B(−p) can be expressed as an iterated matrix multiplication of length at559

most 30 · 4d − 29 over the base matrices B(z), where z is either a field constant, a variable,560

or a negated variable.561



B. Komarath, A. Pandey, and N. Saurabh XX:15

Proof. The proof is by induction on depth.562

Base case: d = 0. Then it computes either a field constant, a variable or a negated563

variable which can be represented by a single base matrix B(z), where z is the label of the564

node.565

Induction step: d = m. There are two cases to be considered depending on whether the566

node at depth m is an addition or a multiplication node.567

Case 1: (Addition). Suppose p = f + g, where f and g are computable by depth568

m − 1 formulas. By induction hypothesis, we can express both B(f) and B(g). Then,569

B(p) = B(f) · B(0) · B(0) · B(g). In other words,570 0 f + g 1
1 0 0
0 1 0

 =

0 f 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 0 0 1
1 0 0
0 1 0

 0 g 1
1 0 0
0 1 0

 .571

Similarly one can express B(−p).572

Case 2: (Multiplication). Suppose p = f · g, where f and g are computable by depth573

m − 1 formulas. We will use Eq. (6) to compute f · g.574

B(f · g) = B(0) · A(−f) · B(0) · A(g) · A(f) · B(0) · A(−g). (10)575
576

We can now use Eq. (5) with appropriate substitutions to compute A(f) (Note, A(0) = B(0)).577

But again to reduce the length we now show a different way to compute A(f) using a single578

call to B(f). Consider the following equation:579

A(f) = B(0) · B(0) · A(−1) · B(1) · B(0) · B(f) · B(−1) · B(0) · A(1) · B(0). (11)580
581

We can use Eq. (5) to obtain A(−1) and A(1). This completes the algorithm to compute582

A(f) with a single call to B(f). Thus we can use equations (10) and (11) to compute B(f ·g).583

Similarly one can express B(−p).584

The upper bound on the length of the iterated matrix multiplication follows from the585

following recurrence: T (d) ≤ 4 · T (d − 1) + 87 and T (0) = 1. ◀586

▶ Theorem 28 (Theorem 18 restated). The determinant (permanent) of an n × n (k, k)-587

diagonal symbolic matrix can be computed using a syntactic multilinear ABP of length n + 2588

and width
(2k

k

)
.589

Proof. We build a layered ABP that is a modification of Grenet’s construction for low590

bandwidth matrices. We briefly describe Grenet’s construction before specializing it to591

low bandwidth matrices. The start node is in layer 0. All monomials computed at layer i592

correspond to some permutation that maps rows [i] to some set of i columns. Further, a node593

in a particular layer keeps track of the subset of columns in the monomials computed at that594

node. This means that in layer n/2, it has to keep track of
(

n
n/2

)
distinct sets resulting in595

exponential (in n) width. The edges between layers are specified such that these invariants596

are preserved.597

For matrices of bandwidth k, we can make use of the fact that rows that are separated by598

at least 2k rows have no common non-zero columns. Therefore, instead of keeping track of a599

subset of all columns, we can keep track of a subset of only a few columns. More specifically,600

any monomial computed at layer i (assume k ≤ i ≤ n − k for simplicity, the rest of the rows601

are handled similarly) must pick i columns from [i + k] since all columns further to the right602

are zero for these rows. Moreover, the columns [i − k] have to be picked by the first i rows603

since these columns are zero from row i + 1. Therefore, rows up to i must pick exactly k604

MFCS 2022



XX:16 Rabbits approximate, cows compute exactly!

columns from the 2k sized set of columns [i − k + 1, i + k]. In layer i, we have exactly one605

node for each k sized subset of this 2k sized set. A node labelled by such a set U computes606

exactly all monomials that correspond to permutations from [i] that picks columns U from607

[i − k + 1, i + k]. Notice that the sum of all polynomials computed at i = n is the permanent.608

This ABP has n + 2 layers and each layer has at most
(2k

k

)
nodes. This is precisely where we609

improve over Grenet’s construction when specialized to matrices of bandwidth k.610

We now describe the edges from layer i to layer i + 1. Consider a node in layer i labelled611

by U ⊂ [i − k + 1, i + k]. If i − k + 1 ̸∈ U , we add an edge labelled xi+1,i−k+1 from this612

node to the node labelled U in layer i + 1. This is the only outgoing edge from such a node.613

Otherwise, i − k + 1 ∈ U and we let V = [i − k + 1, i + k + 1] − U . For each j ∈ V , we add614

an edge labelled xi+1,j from this node to the node labelled by U − {i − k + 1} ∪ {j}.615

To see the correctness of the ABP, consider a node in layer i + 1 labelled by columns U616

from [i − k + 2, i + k + 1]. For a permutation σ mapping [i + 1] into i + 1 columns such that617

exactly U is picked from [i − k + 2, i + k + 1], we let σ′ be its restriction to [i]. Let V be618

the set of k columns picked by σ′ in [i − k + 1, i + k]. Then, by the induction hypothesis,619

the node labelled by V in layer i computes σ′. Moreover, there will be an edge labelled620

xi+1,σ(i+1) from node V in layer i to U in layer i + 1 since σ(i + 1) ∈ [i + 1 − k, i + 1 + k]621

and it cannot be in V since σ is a valid permutation obtained by extending σ′. For the other622

direction, consider an arbitrary monomial m computed at the node labelled U in layer i + 1.623

Clearly, the monomial m has degree i + 1. The row indices of the variables are exactly [i + 1]624

due to the layered construction. Assuming by induction hypothesis that the column indices625

are all distinct upto layer i, it is easy to see that the row i + 1 is also mapped to a distinct626

column since we only chose columns in V (in the above paragraph) which contains columns627

have not appeared so far. Moreover, the monomial m will also have exactly the columns U628

in the set [i − k + 2, i + k + 1] by construction. ◀629

▶ Theorem 29 (Theorem 22 restated). The determinant (permanent) of an n × n (k, k)-630

diagonal symbolic matrix can be computed using a syntactic multilinear circuit of size631

O(exp(k)n) and depth O(k log(n)).632

Proof. Our circuit is a modification of generalized Laplace expansion for low bandwidth633

matrices. For simplicity, we assume that n = 2dk for some d ≥ 1. We will construct634

a layered circuit, where the ith layer will compute permanent of sub-matrices of order635

2ik × 2ik. We label outputs of layer i as ([j + 1, j + 2ik], W ) for j ∈ {0, 2ik, 2i+1k, . . . } that636

is the sum of all permanents of order 2ik × 2ik restricted to the rows [j + 1, j + 2ik] and637

some 2ik columns from [j + 1 − k, j + (2i + 1)k] such that their intersection with columns638

[j + 1 −k, j + k] ∪ [j + (2i − 1)k + 1, j + (2i + 1)k] is exactly W . i.e., the monomials are exactly639

the permutations from [j +1, j +2ik] to some 2ik sized subset of [j +1−k, j +(2i +1)k] where640

exactly the columns W appear in the image from [j+1−k, j+k]∪[j+(2i−1)k+1, j+(2i+1)k].641

The final output is the sum of all outputs in layer d.642

Layer i will use at most O(exp(k)n/2ik) gates and O(k) depth. We will construct these643

layers iteratively. For i = 1, we simply compute n
2k

(4k
2k

)
permanents of order 2k × 2k using644

generalized Laplace expansion. We now show how to compute the outputs of layer i + 1645

assuming that all outputs in layer i have already been computed. The output labelled646

([j + 1, j + 2i+1k], W ) for any j is obtained using the following formula:647

([j + 1, j + 2i+1k], W ) =
∑
U,V

([j + 1, j + 2ik], U)([j + 2ik + 1, j + 2i+1k], V ) (12)648

where U ∩ V = Φ and (U ∪ V ) ∩ ([j + 1 − k, j + k] ∪ [j + (2i+1 − 1)k + 1, j + (2i+1 + 1)k]) = W .649



B. Komarath, A. Pandey, and N. Saurabh XX:17

Clearly, all outputs of layer i + 1 can be computed using O(exp(k)n/2i+1k) gates and O(k)650

depth.651

We now prove that the above construction computes the correct polynomials at gate652

([j + 1, j + 2i+1k], W ). Note that we compute this output by multiplying permanents from653

consecutive blocks of 2ik rows. When multiplying such permanents, we have to ensure that654

the column sets of these permanents are disjoint. For this, we only have to keep track of the655

subset of common non-zero columns between consecutive blocks. The size of this set only656

depends on k. We ensure that columns are disjoint by the condition U ∩ V = Φ. Additionally,657

we have to keep track of the set of columns picked up by the larger block of 2i+1k rows that658

could overlap with its adjacent blocks. Again, this would be a set of columns at both ends of659

the block whose size only depend on k.660

We use induction on the layer number. The statement is trivially true for i = 1 as661

[j + 1 − k, j + k] ∪ [j + k + 1, j + 3k] = [j + 1 − k, j + 3k] for all j. Assuming that the circuit662

computes the correct polynomials at layer i, we now show that the polynomials computed663

in layer i + 1 are correct. First, all computed monomials correspond to permutations. All664

computed monomials are of degree 2i+1k. Since the products in Equation 12 are over disjoint665

rows, there are no repeating rows in any monomial. Furthermore, the only common non-zero666

columns in rows [j +1, j +2ik] and [j +2ik +1, j +2i+1k] are from [j +2ik +1−k, j +2ik +k].667

The condition U ∩ V = Φ implies that there are no common columns from this set, and668

therefore no common columns at all.669

We now show that this gate computes all required monomials. Consider any permutation670

σ from [j + 1, j + 2i+1k] to some 2i+1k sized subset of [j + 1 − k, j + (2i+1 + 1)k] where the671

columns picked from [j +1−k, j +k]∪ [j +(2i+1 −1)k, j +(2i+1 +1)k] is exactly W . Consider672

the restriction of σ to rows [j + 1, j + 2ik] called σ1 and to rows [j + 2ik + 1, j + 2i+1k] called673

σ2. Then, the columns of σ1 are 2ik columns from [j + 1 − k, j + 2ik + k] that of σ2 are674

2ik columns from [j + 2ik + 1 − k, j + 2i+1k + k]. Notice that any intersection in columns675

between σ1 and σ2 must be in the range [j + 2ik + 1 − k, j + 2ik + k] and this is empty676

since σ is a permutation. Therefore, the permutations σ1 and σ2 are computed at gates677

([j + 1, j + 2ik], U) and ([j + 2ik + 1, j + 2i+1k], V ) where U ∩ V = Φ. Furthermore, the set678

U contains all columns picked from [j + 1 − k, j + k] and the set V contains all columns679

picked from [j + 2i+1k + 1 − k, j + 2i+1k + k] by the induction hypothesis. Therefore, the680

intersection of U ∪ V with the set [j + 1 − k, j + k] ∪ [j + (2i+1 − 1)k, j + (2i+1 + 1)k] is681

exactly W .682

The topmost sum is over 2O(k) many terms and can be done in O(k) depth. The total683

depth is therefore O(kd) = O(k log(n)). The total size of the circuit is exp(k) n
k (1/2 + 1/4 +684

· · · + 1/2d) = O(exp(k)n). ◀685

MFCS 2022


	1 Introduction
	1.1 Our findings
	1.2 Proof methods

	2 Preliminaries
	3 Determinant of (1,2)-diagonal matrix versus algebraic formulas
	3.1 Narayana's cows polynomial is VF-complete
	3.2 Padovan polynomial is VF-hard

	4 Matrices of small bandwidth
	A (1,k)-diagonal matrices
	B Approximation by Narayana's cows or Padovan polynomials
	C Missing proofs

